Advertisement

Experimental Mechanics

, Volume 55, Issue 1, pp 155–165 | Cite as

Diffraction-Assisted Image Correlation for Three-Dimensional Surface Profiling

  • Z. Pan
  • S. XiaEmail author
  • A. Gdoutou
  • G. Ravichandran
Article

Abstract

The recently developed Diffraction-Assisted Image Correlation (DAIC) method (Xia et al. Exp Mech 53(5):755–765, 2013) provides a simple and accurate means for three-dimensional (3D) full-field deformation measurement. In the DAIC method, a test specimen is viewed through a transmission diffraction grating, resulting in multiple diffracted views of the same specimen that encode 3D geometric information. Here, we extend the original DAIC method to permit quantitative measurement of 3D surface profiles. We show, through a pinhole projection model, that the 3D shape of an object surface can be reconstructed by simply performing two-dimensional digital image correlation (2D-DIC) analysis between the negative and positive first-order diffracted views. Test results on a Barbie doll’s face and a set of well-defined cylindrical, conical and step surfaces are presented to illustrate the implementation and performance of the proposed surface profiling method.

Keywords

Digital image correlation Diffraction Surface profile measurement Image distortion calibration 

Notes

Acknowledgments

S.X. and Z.P. gratefully acknowledge the support of the Haythornthwaite Foundation.

References

  1. 1.
    Stampfl J, Scherer S, Gruber M, Kolednik O (1996) Reconstruction of surface topographies by scanning electron microscopy for application in fracture research. Appl Phys A 63(4):341–346CrossRefGoogle Scholar
  2. 2.
    Caber PJ (1993) Interferometric profiler for rough surfaces. Appl Opt 32(19):3438–3441CrossRefGoogle Scholar
  3. 3.
    Park Y, Best CA, Badizadegan K, Dasari RR, Feld MS, Kuriabova T, Henle ML, Levine AJ, Popescu G (2010) Measurement of red blood cell mechanics during morphological changes. Proc Natl Acad Sci 107(15):6731–6736CrossRefGoogle Scholar
  4. 4.
    Bajaj CL, Bernardini F, Xu G (1995). Automatic reconstruction of surfaces and scalar fields from 3D scans. Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive TechniquesGoogle Scholar
  5. 5.
    Chen F, Brown GM, Song M (2000) Overview of three-dimensional shape measurement using optical methods. Opt Eng 39(1):10–22CrossRefGoogle Scholar
  6. 6.
    Scott W, Roth G, Rivest J-F (2003) View planning for automated three-dimensional object reconstruction inspection. ACM Comput Surv 35(1):64–96CrossRefGoogle Scholar
  7. 7.
    Son S, Park H, Lee KH (2002) Automated laser scanning system for reverse engineering and inspection. Int J Mach Tools Manuf 42(8):889–897CrossRefGoogle Scholar
  8. 8.
    Beheim G, Fritsch K (1986) Range finding using frequency-modulated laser diode. Appl Opt 25(9):1439–1442CrossRefGoogle Scholar
  9. 9.
    Hamilton D, Wilson T (1982) Three-dimensional surface measurement using the confocal scanning microscope. Appl Phys B 27(4):211–213CrossRefGoogle Scholar
  10. 10.
    Paddock SW (1999) Confocal laser scanning microscopy. Biotechniques 27:992–1007Google Scholar
  11. 11.
    Pawley JB (1995) Handbook of biological confocal microscopy. Springer, New YorkCrossRefGoogle Scholar
  12. 12.
    Molesini G, Pedrini G, Poggi P, Quercioli F (1984) Focus-wavelength encoded optical profilometer. Opt Commun 49(4):229–233CrossRefGoogle Scholar
  13. 13.
    Blais F (2004) Review of 20 years of range sensor development. J Electron Imaging 13(1):231–240CrossRefGoogle Scholar
  14. 14.
    Denisyuk YN (1962) Photographic reconstruction of the optical properties of an object in its own scattered radiation field. Sov Phys Doklady 7:543–545Google Scholar
  15. 15.
    Chang BJ, Alferness R, Leith EN (1975) Space-invariant achromatic grating interferometers: theory. Appl Opt 14(7):1592–1600CrossRefGoogle Scholar
  16. 16.
    Sasaki O, Okazaki H (1986) Sinusoidal phase modulating interferometry for surface profile measurement. Appl Opt 25(18):3137–3140CrossRefGoogle Scholar
  17. 17.
    Welford W (1969) Some applications of projected interference fringes. Opt Acta 16(3):371–376CrossRefGoogle Scholar
  18. 18.
    Darrell T, Wohn K (1988) Pyramid based depth from focus. Proceedings of the IEEE Conference on Computer Vision and Pattern RecognitionGoogle Scholar
  19. 19.
    Grossmann P (1987) Depth from focus. Pattern Recogn Lett 5(1):63–69CrossRefGoogle Scholar
  20. 20.
    Pentland AP (1987) A new sense for depth of field. IEEE Trans Pattern Anal Mach Intell 9(4):523–531CrossRefGoogle Scholar
  21. 21.
    Helm JD, McNeill SR, Sutton MA (1996) Improved three‐dimensional image correlation for surface displacement measurement. Opt Eng 35(7):1911–1920CrossRefGoogle Scholar
  22. 22.
    Luo PF, Chao YJ, Sutton MA, Peters WH III (1993) Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision. Exp Mech 33(2):123–132CrossRefGoogle Scholar
  23. 23.
    Sutton MA, Orteu J-J, Schreier HW (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, New YorkGoogle Scholar
  24. 24.
    Xia S, Gdoutou A, Ravichandran G (2013) Diffraction assisted image correlation: a novel method for measuring three-dimensional deformation using two-dimensional digital image correlation. Exp Mech 53(5):755–765CrossRefGoogle Scholar
  25. 25.
    Notbohm J, Rosakis A, Kumagai S, Xia S, Ravichandran G (2013) Three-dimensional displacement and shape measurement with a diffraction-assisted grid method. Strain 49(5):399–408Google Scholar
  26. 26.
    Badulescu C, Grédiac M, Mathias J, Roux D (2009) A procedure for accurate one-dimensional strain measurement using the grid method. Exp Mech 49(6):841–854CrossRefGoogle Scholar
  27. 27.
    Dupré J-C, Brémand F, Lagarde A (1993) Numerical spectral analysis of a grid: application to strain measurements. Opt Lasers Eng 18(3):159–172CrossRefGoogle Scholar
  28. 28.
    Badulescu C, Grédiac M, Mathias J (2009) Investigation of the grid method for accurate in-plane strain measurement. Meas Sci Technol 20(9):095102CrossRefGoogle Scholar
  29. 29.
    Brown DC (1966) Decentering distortion of lenses. Photogramm Eng 32(4):444–462Google Scholar
  30. 30.
    Yoneyama S, Kitagawa A, Kitamura K, Kikuta H (2006) In-plane displacement measurement using digital image correlation with lens distortion correction. JSME Int J Ser A 49(3):458–467CrossRefGoogle Scholar
  31. 31.
    Jin H, Bruck HA (2005) Pointwise digital image correlation using genetic algorithms. Exp Tech 29(1):36–39CrossRefGoogle Scholar
  32. 32.
    Réthoré J, Hild F, Roux S (2008) Extended digital image correlation with crack shape optimization. Int J Numer Methods Eng 73(2):248–272CrossRefzbMATHGoogle Scholar
  33. 33.
    Poissant J, Barthelat F (2010) A novel “subset splitting” procedure for digital image correlation on discontinuous displacement fields. Exp Mech 50(3):353–364CrossRefGoogle Scholar
  34. 34.
    Liu Y, Fischer G (1997) In situ measurement of local strain in a metal matrix composite by the object grating technique. Scr Mater 36(10):1187–1194CrossRefGoogle Scholar
  35. 35.
    Bouguet J-Y. Camera calibration toolbox for Matlab. http://www.vision.caltech.edu/bouguetj/calib_doc/index.html#parameters

Copyright information

© Society for Experimental Mechanics 2014

Authors and Affiliations

  1. 1.Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of Civil and Environmental EngineeringNorthwestern UniversityEvanstonUSA
  3. 3.Graduate Aerospace LaboratoriesCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations