Experimental Mechanics

, Volume 54, Issue 8, pp 1385–1393 | Cite as

Measurement of Sub-Surface Core Damage in Sandwich Structures Using In-situ Hertzian Indentation During X-ray Computed Tomography

Article

Abstract

Composite sandwich structures with honeycomb cores show varying properties in geometry and mechanical behavior depending on the studied scale. Herein a new test and evaluation method for sub-surface core damage in the indentation area of honeycomb sandwich structures using computed tomography is presented. The combination of X-ray micro-computed tomography (X-μCT) and an image analysis procedure adjusted to the detection of core deformation mechanisms allows the extraction and quantification of externally invisible, sub-surface damage in the sandwich composite. For this specific contact or indentation loading case on the sandwich face sheet an in-situ device is introduced, enabling a 3D analysis of the structural change during progressing indentation depth.

Keywords

Micro-computed tomography GFRP honeycomb sandwich In-situ loading Indentation Contact modelling 

Supplementary material

11340_2014_9902_Fig14_ESM.gif (107 kb)
ESM 1

(GIF 107 kb)

11340_2014_9902_MOESM1_ESM.eps (6.1 mb)
High resolution image (EPS 6297 kb)

References

  1. 1.
    Olsson R, McManus HL (1996) Improved theory for contact indentation of sandwich panels. AIAA J 34(6):1238–1244CrossRefMATHGoogle Scholar
  2. 2.
    Olsson R (2002) Engineering method for prediction of impact response and damage in sandwich panels. J Sandw Struct Mater 4(1):3–29CrossRefGoogle Scholar
  3. 3.
    Petras A, Sutcliffe M (1999) Indentation resistance of sandwich beams. Compos Struct 46(4):413–424CrossRefGoogle Scholar
  4. 4.
    Swanson SR, Kim J (2003) Design of sandwich structures under contact loading. Compos Struct 59(3):403–413CrossRefGoogle Scholar
  5. 5.
    Foo CC, Chai GB, Seah LK (2008) A model to predict low-velocity impact response and damage in sandwich composites. Compos Sci Technol 68(6):1348–1356CrossRefGoogle Scholar
  6. 6.
    Foo CC, Seah LK, Chai GB (2008) Low-velocity impact failure of aluminium honeycomb sandwich panels. Compos Struct 85(1):20–28CrossRefGoogle Scholar
  7. 7.
    Tan K, Watanabe N, Iwahori Y (2011) X-ray radiography and microcomputed tomography examination of damage characteristics in stitched composites subjected to impact loading. Compos Part B 42(4):874–884CrossRefGoogle Scholar
  8. 8.
    Bull D, Helfen L, Sinclair I, Spearing S, Baumbach T (2013) A comparison of multi-scale 3d x-ray tomographic inspection techniques for assessing carbon fibre composite impact damage. Compos Sci Technol 75:55–61CrossRefGoogle Scholar
  9. 9.
    Davies P, Choqueuse D, Bourbouze G (2011) Micro-tomography to study high-performance sandwich structures. J Sandw Struct Mater 13(1):7–21CrossRefGoogle Scholar
  10. 10.
    T. Liu, A.A. Malcolm, J. Xu, in 2nd International Symposium on DNT in Aerospace 2010 (2010)Google Scholar
  11. 11.
    Dietrich S, Weidenmann K, Elsner P (2014) 3d tomographic characterization of sandwich structures. NDT & E International 62:77–84CrossRefGoogle Scholar
  12. 12.
    Bay BK (2008) Methods and applications of digital volume correlation. The J of Strain Analysis for Engineering Design 43(8):745–760CrossRefGoogle Scholar
  13. 13.
    Forsberg F, Sj¨odahl M, Mooser R, Hack E, Wyss P (2010) Full threedimensional strain measurements on wood exposed to three-point bending: Analysis by use of digital volume correlation applied to synchrotron radiation micro-computed tomography image data. Strain 46(1):47–60CrossRefGoogle Scholar
  14. 14.
    M. Gates, J. Lambros, M.T. Heath (2011) Towards high performance digital volume correlation, Experimental Mechanics 51(4), 491–507 26 Stefan Dietrich et alGoogle Scholar
  15. 15.
    Limodin N, Rthor J, Buffire JY, Hild F, Roux S, Ludwig W, Rannou J, Gravouil A (2010) Influence of closure on the 3d propagation of fatigue cracks in a nodular cast iron investigated by x-ray tomography and 3d volume correlation. Acta Mater 58(8):2957–2967CrossRefGoogle Scholar
  16. 16.
    Roux S, Hild F, Viot P, Bernard D (2008) Three-dimensional image correlation from x-ray computed tomography of solid foam. Compos A: Appl Sci Manuf 39(8):1253–1265CrossRefGoogle Scholar
  17. 17.
    Viot P, Plougonven E, Bernard D (2008) Microtomography on polypropylene foam under dynamic loading: 3d analysis of bead morphology evolution. Compos A: Appl Sci Manuf 39(8):1266–1281CrossRefGoogle Scholar
  18. 18.
    Buffiere JY, Maire E, Adrien J, Masse JP, Boller E (2010) In situ experiments with x ray tomography: an attractive tool for experimental mechanics. Exp Mech 50(3):289–305CrossRefGoogle Scholar
  19. 19.
    Brault R, Germaneau A, Dupr J, Doumalin P, Mistou S, Fazzini M (2013) In-situ analysis of laminated composite materials by x-ray microcomputed tomography and digital volume correlation. Exp Mech 53(7):1143–1151CrossRefGoogle Scholar
  20. 20.
    Kuppinger J, Weidenmann K, Kordick M, Wafzig F, Henning F, Elsner P (2010) Influence of fibre length and concentration on the mechanical properties of long glass fibre reinforced polyurethane. J of Plastics Technology 5:205–227Google Scholar
  21. 21.
    Kuppinger J, Weidenmann K, Haspel B, Wafzig F, Hennig F, Elsner P (2011) Influence of processing conditions, fiber contents and fiber lengths on fiber orientation in the polyurethane fiber spraying process. J of Plastics Technologies 6:44–65Google Scholar
  22. 22.
    DIN 53291 - Druckversuch senkrecht zur Deckschichtebene (1982)Google Scholar
  23. 23.
    DIN 53292 - Zugversuch senkrecht zur Deckschichtebene (1982)Google Scholar
  24. 24.
    DIN 65469 - Faserverst¨arkte Kunststoffe - Zugversuch an einlagigen Zugflachprobek¨orpern (1992)Google Scholar
  25. 25.
    DIN 844 - Harte Schaumstoffe - Bestimmung der Druckeigenschaften (2009)Google Scholar
  26. 26.
    Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A 1(6):612–619CrossRefGoogle Scholar
  27. 27.
    B. J¨ahne, Image processing for scientific applications (CRC press Boca Raton, 1997)Google Scholar
  28. 28.
    Schneider CA, Rasband WS, Eliceiri KW et al (2012) Nih image to imagej: 25 years of image analysis. Nat Methods 9(7):671–675CrossRefGoogle Scholar
  29. 29.
    Otsu N (1975) A threshold selection method from gray-level histograms. Automatica 11(285–296):23–27Google Scholar
  30. 30.
    B. J¨ahne, Digitale Bildverarbeitung (Springer DE, 2005)Google Scholar
  31. 31.
    Sahoo P, Wilkins C, Yeager J (1997) Threshold selection using renyi’s entropy. Pattern Recogn 30(1):71–84CrossRefMATHGoogle Scholar
  32. 32.
    T.S. Yoo, M.J. Ackerman, W.E. Lorensen, W. Schroeder, V. Chalana, S. Aylward, D. Metaxas, R. Whitaker (2002), Engineering and algorithm 28 Stefan Dietrich et al. design for an image processing api: a technical report on itk-the insight toolkit, Studies in Health Technology and Informatics pp. 586–592Google Scholar
  33. 33.
    Zhou D, Stronge W (2006) Low velocity impact denting of {HSSA} lightweight sandwich panel. Int J Mech Sci 48(10):1031–1045CrossRefMATHGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2014

Authors and Affiliations

  • S. Dietrich
    • 1
  • M. Koch
    • 1
  • P. Elsner
    • 1
  • K. Weidenmann
    • 1
  1. 1.Institute for Applied Materials (IAM-WK)Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations