Experimental Mechanics

, Volume 54, Issue 6, pp 971–985 | Cite as

In Situ Measurements of Strains in Composite Battery Electrodes during Electrochemical Cycling

  • E. M. C. Jones
  • M. N. Silberstein
  • S. R. White
  • N. R. Sottos
Article

Abstract

The cyclic stress in lithium-ion battery electrodes induced by repeated charge and discharge cycles causes electrode degradation and fracture, resulting in reduced battery performance and lifetime. To investigate electrode mechanics as a function of electrochemical cycling, we utilize digital image correlation (DIC) to measure the strains that develop in lithium-ion battery electrodes during lithiation and delithiation processes. A composite graphite electrode is cycled galvanostatically (with constant current) in a custom battery cell while optical images of the electrode surface are captured in situ. The strain in the electrode is computed using an in-house DIC code. On average, an unconstrained composite graphite electrode expands 1.41 % during lithiation and contracts 1.33 % during delithiation. These strain values compare favorably with predictions based on the elastic properties of the composite electrode and the expansion of graphite-lithium intercalation compounds (G-LICs). The establishment of this experimental protocol will enable future studies of the relationship between electrode mechanics and battery performance.

Keywords

Lithium-ion battery Graphite composite electrode Digital image correlation Electrode mechanics In situ strain measurement 

References

  1. 1.
    Vetter J, Novák P, Wagner M, Veit C, Möller K, Besenhard J, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A (2005) Ageing mechanisms in lithium-ion batteries. J Power Sources 147:269–281. doi:10.1016/j.jpowsour.2005.01.006 CrossRefGoogle Scholar
  2. 2.
    Qi Y, Guo H, Hector LG, Timmons A (2010) Threefold increase in the young’s modulus of graphite negative electrode during lithium intercalation. J Electrochem Soc 157(5):A558–A566. doi:10.1149/1.3327913 CrossRefGoogle Scholar
  3. 3.
    Beaulieu LY, Eberman KW, Turner RL, Krause LJ, Dahn JR (2001) Colossal reversible volume changes in lithium alloys. Electrochem Solid-State Lett 4(9):A137–A140. doi:10.1149/1.1388178 CrossRefGoogle Scholar
  4. 4.
    Liu XH, Huang JY (2011) In situ TEM electrochemistry of anode materials in lithium ion batteries. Energy Environ Sci 4:3844–3860. doi:10.1039/c1ee01918j CrossRefGoogle Scholar
  5. 5.
    Sethuraman VA, Chon MJ, Shimshak M, Srinivasan V, Guduru PR (2010) In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation. J Power Sources 195:5062–5066. doi:10.1016/j.jpowsour.2010.02.013 CrossRefGoogle Scholar
  6. 6.
    Bower AF, Guduru PR, Sethuraman VA (2011) A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell. J Mech Phys Solids 59:804–828. doi:10.1016/j.jmps.2011.01.003 CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Deshpande R, Cheng YT, Verbrugge MW (2010) Modeling diffusion-induced stress in nanowire electrode structures. J Power Sources 195:5081–5088. doi:10.1016/j.jpowsour.2010.02.021 CrossRefGoogle Scholar
  8. 8.
    Li J, Lewis RB, Dahn JR (2007) Sodium carboxymethyl cellulose. Electrochem Solid-State Lett 10(2):A17–A20. doi:10.1149/1.2398725 CrossRefGoogle Scholar
  9. 9.
    Timmons A, Dahn J R (2006) In situ optical observations of particle motion in alloy negative electrodes for Li-ion batteries. J Electrochem Soc 153(6):A1206–A1210. doi:10.1149/1.2194611 CrossRefGoogle Scholar
  10. 10.
    Sethuraman VA, Van Winkle N, Abraham DP, Bower AF, Guduru PR (2012) Real-time stress measurements in lithium-ion battery negative-electrodes. J Power Sources 206:334–342. doi:10.1016/j.jpowsour.2012.01.036 CrossRefGoogle Scholar
  11. 11.
    Sethuraman VA, Nguyen A, Chon MJ, Nadimpalli SPV, Wang H, Abraham DP, Bower AF, Shenoy VB, Guduru PR (2013) Stress evolution in composite silicon electrodes during lithiation/delithiation. J Electrochem Soc 160(4):A739–A746. doi:10.1149/2.021306jes CrossRefGoogle Scholar
  12. 12.
    Qi Y, Harris SJ (2010) In situ observation of strains during lithiation of a graphite electrode. J Electrochem Soc 157(6):A741–A747. doi:10.1149/1.3377130 CrossRefGoogle Scholar
  13. 13.
    Berfield TA, Patel JK, Shimmin RG, Braun PV, Lambros J, Sottos NR (2006) Fluorescent image correlation for nanoscale deformation measurements. Small 2(5):631–635. doi:10.1002/smll.200500289 CrossRefGoogle Scholar
  14. 14.
    Berfield TA, Patel JK, Shimmin RG, Braun PV, Lambros J, Sottos NR (2007) Micro- and nanoscale deformation measurement of surface and internal planes via digital image correlation. Exp Mech 47:51–62. doi:10.1007/s11340-006-0531-2 CrossRefGoogle Scholar
  15. 15.
    Hamilton AR, Sottos NR, White SR (2010) Local strain concentrations in a microvascular network. Exp Mech 50:255–263. doi:10.1007/s11340-009-9299-5 CrossRefGoogle Scholar
  16. 16.
    Van Blaaderen A, Vrij A (1992) Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres. Langmuir 8(12):2921–2931CrossRefGoogle Scholar
  17. 17.
    Matweb (2013) Graphite (Carbon C). www.matweb.com
  18. 18.
    Verma P, Maire P, Novák P (2010) A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta 55:6332–6341. doi:10.1016/j.electacta.2010.05.072 CrossRefGoogle Scholar
  19. 19.
    Eberl C (2010) Digital image correlation and tracking. http://www.mathworks.com/matlabcentral/fileexchange/12413
  20. 20.
  21. 21.
    Mathworks (2012) Normalized 2-D cross-correlation (normxcorr2). http://www.mathworks.com/help/images/ref/normxcorr2.html
  22. 22.
    Barlow J (1976) Optimal stress locations in finite element models. Int J Num Methods Eng 10:243–251CrossRefMATHGoogle Scholar
  23. 23.
    Tortorelli DA (2010) Solid mechanics : analysis and design with the finite element method. Electronic Publication, UrbanaGoogle Scholar
  24. 24.
    Dahn JR (1991) Phase Diagram of LixC6. Phys Rev B 44(17):9170–9177CrossRefGoogle Scholar
  25. 25.
    Dahn JR, Fong R, Spoon MJ (1990) Suppression of staging in lithium-intercalated carbon by disorder in the host. Phys Rev B 42(10):6424–6432CrossRefGoogle Scholar
  26. 26.
    Chemical Book (2010) Carboxymethyl cellulose. http://www.chemicalbook.com/ChemicalProductProperty_EN_CB5.209844.htm
  27. 27.
    International Programme on Chemical Safety (2012) Carbon black. http://www.inchem.org/documents/icsc/icsc/eics0471.htm
  28. 28.
    Verhaegh NAM, Van Blaaderen A (1994) Dispersions of rhodamine-labeled silica spheres: synthesis, characterization, and fluorescence confocal scanning laser microscopy. Langmuir 10:1427–1438CrossRefGoogle Scholar
  29. 29.
    Whitney JM, McCullough RL (1990) Micromechanical materials modeling. Technomic Publishing Company, Inc., LancasterGoogle Scholar
  30. 30.
    Gibson LJ, Ashby MF (1988) Cellular solids. Pergamon Press, New YorkMATHGoogle Scholar
  31. 31.
    Rosen BW, Hashin Z (1970) Effective thermal expansion coefficients and specific heats of composite materials. Int J Engng Sci 8:157–173CrossRefGoogle Scholar
  32. 32.
    Zheng H, Zhang L, Liu G, Song X, Battaglia VS (2012) Correlationship between electrode mechanics and long-term cycling performance for graphite anode in lithium ion cells. J Power Sources 217:530–537. doi:10.1016/j.jpowsour.2012.06.045 CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2014

Authors and Affiliations

  • E. M. C. Jones
    • 1
  • M. N. Silberstein
    • 2
  • S. R. White
    • 3
  • N. R. Sottos
    • 4
  1. 1.Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Department of Aerospace EngineeringBeckman Institute for Advanced Science and TechnologyUrbanaUSA
  4. 4.Department of Materials Science and EngineeringBeckman Institute for Advanced Science and TechnologyUrbanaUSA

Personalised recommendations