Experimental Mechanics

, Volume 54, Issue 6, pp 1031–1042 | Cite as

Sub-Millimeter Measurement of Finite Strains at Cutting Tool Tip Vicinity

  • T. Pottier
  • G. Germain
  • M. Calamaz
  • A. Morel
  • D. Coupard


The present paper details a simple and effective experimental procedure dedicated to strain measurement during orthogonal cutting operations. It relies on the use of high frame-rate camera and optical microscopy. A numerical post-procedure is also proposed in order to allow particle tracking from Digital Image Correlation (DIC). Therefore strain accumulation within finite strains framework is achieved. The significant magnitude of the calculated strains is partially due to a singular side effect that leads to local material disjunction. The strain localization in the Adiabatic Shear Band (ASB) exhibits different strain paths at various locations along this band and a non-linear evolution of the strain accumulation. A focus is made on the formation mechanisms of serrated chips obtained from Ti6Al4V titanium alloy. The side observation performed during this work allow to proposed three possible scenarios to explain this very phenomenon.


Orthogonal cutting Digital image correlation Chip segmentation Adiabatic shear band Machining 


  1. 1.
    Mabrouki T, Rigal J-F (2006) A contribution to a qualitative understanding of thermo-mechanical effects during chip formation in hard turning. J Mater Process Technol 176:214–221CrossRefGoogle Scholar
  2. 2.
    Bahi S, Nouari M, Moufki A, El Mansori M, Molinari A (2011) A new friction law for sticking and sliding contacts in machining. Tribol Int 44:764–771CrossRefGoogle Scholar
  3. 3.
    Childs T (2006) Friction modelling in metal cutting. Wear 260:310–318CrossRefGoogle Scholar
  4. 4.
    Calamaz M, Coupard D, Girot F (2010) Numerical simulation of titanium alloy dry machining with a strain softening constitutive law. Mach Sci Technol 14(2):244–257CrossRefGoogle Scholar
  5. 5.
    Hor A, Morel F, Lebrun J-L, Germain G (2013) An experimental investigation of the behaviour of steels over large temperature and strain rate ranges. Int J Mech Sci 67:108–122CrossRefGoogle Scholar
  6. 6.
    Shi B, Attia H, Tounsi N (2010) Identification of material constitutive laws for machining - part i: An analytical model describing the stress, strain, strain rate, and temperature fields in the primary shear zone in orthogonal metal cutting. In: Journal of Manufacturing Science and Engineering, Transactions of the ASME 132Google Scholar
  7. 7.
    Jaspers S, Dautzenberg J (2002) Material behaviour in metal cutting: Strains, strain rates and temperatures in chip formation. J Mater Process Technol 121:123–135CrossRefGoogle Scholar
  8. 8.
    Buda J (1972) New methods in the study of plastic deformation in the cutting zone. CIRP Ann 21:17–18Google Scholar
  9. 9.
    Komanduri R, Brown R (1981) On the mechanics of chip segmentation in machining. J Eng Ind 103:33–51CrossRefGoogle Scholar
  10. 10.
    Ernst H, Merchant M (1941) Chip formation, friction and high quality machined surfaces. Surf Treat Metals 29:299–378Google Scholar
  11. 11.
    Lee E, Shaffer B (1951) The theory of plasticity applied to a problem of machining. J Appl Mech 18:405–413Google Scholar
  12. 12.
    Childs T (1971) A new visio-plasticity technique and a study of curly chip formation. Int J Mech Sci 13:375–387CrossRefGoogle Scholar
  13. 13.
    Pujana J, Arrazola P, Villar J (2008) In-process high-speed photography applied to orthogonal turning. J Mater Process Technol 202:475–485CrossRefGoogle Scholar
  14. 14.
    Chaudhri M (1993) Subsurface deformation patterns around indentation in workhardened mild steel. Phil Mag Lett 67(67):107–115CrossRefGoogle Scholar
  15. 15.
    List G, Sutter G, Bi X, Molinari A, Bouthiche A (2013) Strain, strain rate and velocity fields determination at very high cutting speed. J Mater Process Technol 213:693–699CrossRefGoogle Scholar
  16. 16.
    Hijazi A, Madhavan V (2008) A novel ultra-high speed camera for digital image processing applications. Meas Sci Technol 19:085503(11p)CrossRefGoogle Scholar
  17. 17.
    Germain G, Morel F, Lebrun J, Morel A (2007) Machinability and surface integrity for a bearing steel and a titanium alloy in laser assisted machining (optimisation on LAM on two materials). Lasers Eng 17(5–6):329–344Google Scholar
  18. 18.
    Shaw M, Dirke S, Smith P, Cook N, Loewen E, Yang C (1954) Machining titanium. In: MIT Rep. (4th edn.) - Massachusetts Institute of TechnologyGoogle Scholar
  19. 19.
    Gnanamanickam E, Lee S, Sullivan J, Chandrasekar S (2009) Direct measurement of large-strain deformation fields by particle tracking. Meas Sci Technol 20:095710(12p)CrossRefGoogle Scholar
  20. 20.
    Guo Y, Efe M, Moscoso W, Sagapuram D, Trumble K, Chandrasekar S (2012) Deformation field in large-strain extrusion machining and implications for deformation processing. Script Mater 66:235–238CrossRefGoogle Scholar
  21. 21.
    Vacher P, Dumoulin S, Morestin F, Mguil-Touchal S (1999) Bidimensional strain measurement using digital images. Proc Inst Mech Eng 213:811–817Google Scholar
  22. 22.
    Pottier T, Moutrille M-P, Le-Cam J-B, Balandraud X, Grédiac M (2009) Study on the use of motion compensation techniques to determine heat sources. Application to large deformations on cracked rubber specimens. Exp Mech 49:561–574CrossRefGoogle Scholar
  23. 23.
    Bornert M, Brémand F, Doumalin P, Dupré J-C, Fazzini M, Grédiac M, Hild F, Mistou S, Molimard J, Orteu J-J, Robert L, Surrel Y, Vacher P, Wattrisse B (2008) Assessment of digital image correlation measurement errors: methodology and results. Exp Mech 49:353–370CrossRefGoogle Scholar
  24. 24.
    Pan B, Xie H, Wang Z, Qian K, Wang Z (2008) Study on subset size selection in digital image correlation for speckle patterns. Opt Express 16:7037–7048CrossRefGoogle Scholar
  25. 25.
    Triconnet K, Derrien K, Hild F, Baptiste D (2009) Parameter choice for optimized digital image correlation. Opt Lasers Eng 47:728–737CrossRefGoogle Scholar
  26. 26.
    Pan B, Lu Z, Xie H (2010) Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation. Opt Lasers Eng 48:469–477CrossRefGoogle Scholar
  27. 27.
    Sutton MA, Yan JH, Tiwari V, Schreier WH, Orteu JJ (2008) The effect of out-of-plane motion on 2d and 3d digital image correlation measurements. Opt Lasers Eng 46:746–757CrossRefGoogle Scholar
  28. 28.
    Pan B, Yu L, Wu D (2013) High-accuracy 2d digital image correlation measurements with bilateral telecentric lenses: error analysis and experimental verification. Exp Mech 53:1719–1733CrossRefGoogle Scholar
  29. 29.
    Pottier T, Louche H, Samper S, Favrelière H, Toussaint F, Vacher P (2012) A new filtering approach dedicated to heat sources computation from thermal field measurements. In: Photomechanics, Montpellier, FranceGoogle Scholar
  30. 30.
    Chrysochoos A, Louche H (2000) An infrared image processing to analyse the calorific effects accompanying strain localisation. Int J Eng Sci 38:1759–1788CrossRefGoogle Scholar
  31. 31.
    Le Goic G, Favrelière H, Samper S, Formosa F (2011) Multi scale modal decomposition of primary form, waviness and roughness of surfaces. Scanning 33(5):332–341CrossRefGoogle Scholar
  32. 32.
    Wang W, Mottershead J, Sebastian C, Patterson E (2011) Shape features and finite element model updating from full-field strain data. Int J Solids Struct 48:1644–1657CrossRefzbMATHGoogle Scholar
  33. 33.
    Calamaz M, Limido J, Nouari M, Espinosa C, Coupard D, Salan M, Girot F, Chieragatti R (2009) Toward a better understanding of tool wear effect through a comparison between experiments and sph numerical modelling of machining hard materials. Int J Refract Met Hard Mater 27:595–604CrossRefGoogle Scholar
  34. 34.
    Shih A (1995) Finite element analysis of the rake angle effects in orthogonal metal cutting. Int J Mech Sci 1:1–17CrossRefGoogle Scholar
  35. 35.
    Komanduri R, von Turkovich B (1981) New observations on the mechanisms of chip formation when machining titanium alloys. J Wear 69(2):179–188CrossRefGoogle Scholar
  36. 36.
    Gentel A, Hoffmeiste H (2001) Chip formation in machining Ti6Al4V at extremely high cutting speeds. CIRP Ann Manuf Technol 50(1):49–52CrossRefGoogle Scholar
  37. 37.
    Nakayama K, Arai M, Kanda T (1988) Machining characteristics of hard materials. CIRP Ann Manuf Technol 37(1):89–92CrossRefGoogle Scholar
  38. 38.
    Vyas A, Shaw M (1999) Mechanics of saw-tooth chip formation in metal cutting. J Manuf Sci Eng 121(2):163–172CrossRefGoogle Scholar
  39. 39.
    Hua J, Shivpuri R (2004) Prediction of chip morphology and segmentation during the machining of titanium alloys. J Mater Process Technol 150(1–2):124–133CrossRefGoogle Scholar
  40. 40.
    Cockroft M, Latham D (1968) Ductility and workability of metals. J Inst Met 96:33–39Google Scholar
  41. 41.
    Braham-Bouchnak T (2010) étude du comportement en sollicitation extrême et de l’usinabilité d’un nouvel alliage de titane aeronautique : le Ti555-3. Ph.D. thesis, École Nationale Supérieure des Arts et MétiersGoogle Scholar
  42. 42.
    Courbon C (2011) Vers une modélisation physique de la coupe des aciers spéciaux : intégration du comportement métallurgique et des phénoménes tribologiques et thermiques aux interfaces. Ph.D. thesis, Ecole Centrale – Universit de LyonGoogle Scholar
  43. 43.
    Abukhshim N, Mativenga P, Sheikh M (2006) Heat generation and temperature prediction in metal cutting: a review and implications for high speed machining. Int J Mach Tools Manuf 46:782–800CrossRefGoogle Scholar
  44. 44.
    Arrazola J, Arriola I, Davies M (2009) Analysis of the influence of tool type, coatings, and machinability on the thermal fields in orthogonal machining of AISI 4140 steels. CIRP Ann Manuf Technol 58:85–88CrossRefGoogle Scholar
  45. 45.
    Filice L, Umbrello D, Beccari S, Micari F (2006) On the FE codes capability for tool temperature calculation in machining processes. J Mater Process Technol 174:286–292CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2014

Authors and Affiliations

  • T. Pottier
    • 1
    • 3
  • G. Germain
    • 1
  • M. Calamaz
    • 2
  • A. Morel
    • 1
  • D. Coupard
    • 2
  1. 1.Arts et Métiers ParisTech, LAMPA-EA1427AngersFrance
  2. 2.Arts et Métiers ParisTech, I2M-UMR5295Talence CedexFrance
  3. 3.Université de Toulouse, Mines Albi, ICA (Institut Clément Ader)AlbiFrance

Personalised recommendations