Advertisement

Experimental Mechanics

, Volume 54, Issue 6, pp 1073–1085 | Cite as

Determination of All 21 Independent Elastic Coefficients of Generally Anisotropic Solids by Resonant Ultrasound Spectroscopy: Benchmark Examples

  • P. Sedlák
  • H. SeinerEmail author
  • J. Zídek
  • M. Janovská
  • M. Landa
Article

Abstract

We present an experimental methodology for determination of all 21 elastic constants of materials with general (triclinic) anisotropy. This methodology is based on contactless resonant ultrasound spectroscopy complemented by pulse-echo measurements and enables full characterization of elastic anisotropy of such materials from measurements on a single small specimen of a parallelogram shape. The methodology is applied to two benchmark examples: a material with generally rotated cubic anisotropy (single crystal of silicon) and an isotropic material (silicon-infiltrated silicon carbide ceramics). In both the proposed approach is able to provide a full triclinic tensor with relatively low experimental errors and to identify indubitably the anisotropy class of the material; for the cubic material also the orientations of the principal axes and the cubic elastic coefficients are reliably determined.

Keywords

Elastic anisotropy Triclinic material Resonant ultrasound spectroscopy Inverse procedure 

Notes

Acknowledgments

This work has been financially supported by the Czech Science Foundation (project No. GA13-13616S).

References

  1. 1.
    Hearmon RFS (1961) An introduction to applied anisotropic elasticity. Oxford University Press, LondonGoogle Scholar
  2. 2.
    Rayner JH, Brown G (1973) The crystal structure of talc. Clays Clay Miner 21:103–114CrossRefGoogle Scholar
  3. 3.
    Ferguson RB, Trail RJ, Taylor WH (1958) The crystal structure of low-temperature and high-temperature albites. Acta Crystal 11:331–348CrossRefGoogle Scholar
  4. 4.
    Sturzer T, Friederichs GM, Luetkens H, Amato A, Klauss H-H, Johrendt D (2013) Structural and magnetic phase transitions in triclinic Ca10(FeAs)10(Pt3As8). J Phys Condens Matter 25:122203CrossRefGoogle Scholar
  5. 5.
    Fu WT, Gotz RJ, IJdo DJW (2010) On the symmetry and crystal structures of Ba2LaIrO6. J Solid State Chem 183:419–424CrossRefGoogle Scholar
  6. 6.
    Rowda B, Avdeev M, Lee PL, Henry PF, Ling CD (2008) Structures of 6H perovskites Ba3CaSb2O9 and Ba3SrSb2O9 determined by synchrotron X-ray diffraction, neutron powder diffraction and ab initio calculations. Acta Crystal B Struct Sci 64:154–159CrossRefGoogle Scholar
  7. 7.
    Truell R, Elbaum C, Chick BB (1969) Ultrasonic methods in solid state physics. Academic Press, New YorkGoogle Scholar
  8. 8.
    Levy M, Bass H, Stern R (2000) Handbook of elastic properties of solids, liquids, and gases, vol 1. Academic, New YorkGoogle Scholar
  9. 9.
    Bolef DI, Miller JG (1971) Physical acoustics VIII. In: Mason WP, Thurston RN (eds). Academic, New YorkGoogle Scholar
  10. 10.
    Migliori A, Sarrao JL, Visscher WM, Bell TM, Lei M, Fisk Z, Leisure RG (1993) Resonant ultrasound spectroscopic techniques for measurement of the elastic moduli of solids. Physica B Phys Condens Matter 183:1–24CrossRefGoogle Scholar
  11. 11.
    Maynard J (1996) Resonant ultrasound spectroscopy. Phys Today 49:26–31CrossRefGoogle Scholar
  12. 12.
    Leisure RG, Willis FA (1997) Resonant ultrasound spectroscopy. J Phys Condens Matter 9:6001–6029CrossRefGoogle Scholar
  13. 13.
    Francois M, Geymonat G, Berthaud Y (1998) Determination of the symmetries of an experimentally determined stiffness tensor: application to acoustic measurements. Int J Solids Struct 35:4091–4106CrossRefzbMATHGoogle Scholar
  14. 14.
    Diner C, Kochetov M, Slawinski MA (2011) Identifying symmetry classes of elasticity tensors using monoclinic distance function. J Elast 102:175–190CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Mah M, Schmitt DR (2003) Determination of the complete elastic stiffnesses from ultrasonic phase velocity measurements. J Geophys Res 108:ECV6(1-11)Google Scholar
  16. 16.
    Vishnuvardhan J, Krishnamurthy CV, Balasubramaniam K (2008) Determination of material symmetries from ultrasonic velocity measurements: a genetic algorithm based blind inversion method. Compos Sci Tech 68:862–871CrossRefGoogle Scholar
  17. 17.
    Vishnuvardhan J, Krishnamurthy CV, Balasubramaniam K (2009) Blind inversion method using Lamb waves for the complete elastic property characterization of anisotropic plates. J Acoust Soc America 125:761–771CrossRefGoogle Scholar
  18. 18.
    Odgaard A, Kabel J, Van Rietbergen B, Dalstra M, Huiskes R (1997) Fabric and elastic principal directions of cancellous bone are closely related. J Biomech 30:487–495CrossRefGoogle Scholar
  19. 19.
    Seiner H, Bodnárová L, Sedlák P, Janeček M, Srba O, Král R, Landa M (2010) Application of ultrasonic methods to determine elastic anisotropy of polycrystalline copper processed by equal-channel angular pressing. Acta Mater 58:235–247CrossRefGoogle Scholar
  20. 20.
    Sarrao JL, Chen SR, Visscher WM, Lei M, Kocks UF, Migliori A (1994) Determination of the crystallographic orientation of a single crystal using resonant ultrasound spectroscopy. Rev Sci Instrum 65:2139–2140CrossRefGoogle Scholar
  21. 21.
    Farzbod F, Hurley D (2012) Using eigenmodes to perform the inverse problem associated with resonant ultrasound spectroscopy. IEEE Trans Ultrason Ferroelectr Freq Control 59:2470–2475Google Scholar
  22. 22.
    Landa M, Sedlák P, Seiner H, Heller L, Bicanová L, Šittner P, Novák V (2009) Modal resonant ultrasound spectroscopy for ferroelastics. Appl Phys A Mater Sci Process 96:557–567CrossRefGoogle Scholar
  23. 23.
    Hurley DH, Reese SJ, Farzbod F (2012) Application of laser-based resonant ultrasound spectroscopy to study texture in copper. J Appl Phys 111:053527CrossRefGoogle Scholar
  24. 24.
    Zadler BJ (2005) Properties of elastic materials using contacting and non-contacting acoustic spectroscopy. PhD Thesis, Colorado School of MinesGoogle Scholar
  25. 25.
    Sedlák P, Landa M, Seiner H, Bicanová L, Heller L (2008) Non-contact resonant ultrasound spectroscopy for elastic constants measurement. NDT Database J (www.ndt.net) art. no. 34(1-6)
  26. 26.
    Hurley DH, Reese SJ, Park SK, Utegulov Z, Kennedy JR, Telschow KL (2010) In situ laser-based resonant ultrasound measurements of microstructure mediated mechanical property evolution. J Appl Phys 107:063510CrossRefGoogle Scholar
  27. 27.
    Ogi H, Ohmori T, Nakamura N, Hirao M (2006) Elastic, anelastic, and piezoelectric coefficients of -quartz determined by resonance ultrasound spectroscopy. J Appl Phys 100:053511CrossRefGoogle Scholar
  28. 28.
    Ogi H, Sato K, Asada T, Hirao M (2002) Complete mode identification for resonance ultrasound spectroscopy. J Acoust Soc America 112:2553–2557CrossRefGoogle Scholar
  29. 29.
    Bernard S, Grimal Q, Laugier P (2013) Accurate measurement of cortical bone elasticity tensor with resonant ultrasound spectroscopy. J Mech Behavior Biomed Mater 18:12–19CrossRefGoogle Scholar
  30. 30.
    Seiner H, Sedlák P, Bodnárová L, Kruisová A, Landa M, De Pablos A, Belmonte M (2012) Sensitivity of the resonant ultrasound spectroscopy to weak gradients of elastic properties. J Acoust Soc America 131:3775–3785CrossRefGoogle Scholar
  31. 31.
    Janovská M, Sedlák P, Seiner H, Landa M, Marton P, Ondrejkovič P, Hlinka J (2012) Anisotropic elasticity of DyScO3 substrates. J Phys Condens Matter 24:385404CrossRefGoogle Scholar
  32. 32.
    Sedmák P, Seiner H, Sedlák P, Landa M, Mušálek R, Matějíček J (2013) Application of resonant ultrasound spectroscopy to determine elastic constants of plasma-sprayed coatings with high internal friction. Surf Coatings Technol 232:747–757CrossRefGoogle Scholar
  33. 33.
    Cowin SC, Mehrabadi MM (1987) On the identification of material symmetry for anisotropic elastic materials. Q J Mech Appl Math 40:451–476CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Cowin SC, Mehrabadi MM (1990) Eigentensors of linear anisotropic elastic materials. Q J Mech Appl Math 43:15–41CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Cowin SC, Mehrabadi MM (1995) Anisotropic symmetries of linear elasticity. Appl Mech Rev 48:247–285CrossRefGoogle Scholar
  36. 36.
    Ting TCT (2003) Generalized Cowin-Mehrabadi theorems and a direct proof that the number of linear elastic symmetries is eight. Int J Solids Struct 40:7129–7142CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Bóna A, Bucataru I, Slawinski MA (2004) Characterization of elasticity-tensor symmetries using SU(2). J Elast 75:267–289CrossRefzbMATHGoogle Scholar
  38. 38.
    Bucataru I, Slawinski MA (2009) Invariant properties for finding distance in space of elasticity tensors. J Elast 94:97–114CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2014

Authors and Affiliations

  • P. Sedlák
    • 1
  • H. Seiner
    • 1
    Email author
  • J. Zídek
    • 1
  • M. Janovská
    • 1
  • M. Landa
    • 1
  1. 1.Institute of Thermomechanics, Academy of Sciences of the Czech RepublicPragueCzech Republic

Personalised recommendations