Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Experimental Technique to Characterize the Plastic Behaviour of Metallic Materials in a Wide Range of Temperatures and Strain Rates: Application to a High-Carbon Steel

Abstract

This paper presents high temperature quasi-static and dynamic tensile testing. Samples are heated by an induction system controlled with a pyrometer. A high-speed camera (500 fps) is used to determine displacement fields with a digital image correlation software. For such tests a specific marking procedure of the sample is applied. This method is used to characterize the mechanical behaviour of a C68 high-carbon steel at temperatures up to 720 °C. Stress-strain curves are given from room temperature up to 720 °C at strain rates ranging from 400 /s to 4 × 102 /s.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. 1.

    Anwander M, Zagar B, Weiss B, Weiss H (2000) Noncontacting strain measurements at high temperatures by the digital laser speckle correlation. Exp Mech 40(1):98–105

  2. 2.

    Baird J (1971) The effects of strain-ageing due to interstitial solutes on the mechanical properties of metals. Metall Rev 16(1):1–18

  3. 3.

    Bridgman P (1952) Studies in large plastic flow and fracture. McGraw-Hill

  4. 4.

    Chen J, Young B (2006) Stress-strain curves for stainless steel at elevated temperatures. Eng Struct 28:229–239

  5. 5.

    Clausen A, Auestad T (2002) Split-Hopkinson tension bar: experimental set-up and theoretical considerations. Tech. rep, Norwegian University of Science and Technology

  6. 6.

    Codrington J, Nguyen P, Ho S, Kotousov A (2009) Induction heating apparatus for high temperature testing of thermo-mechanical properties. Appl Therm Eng 29:2783–2789

  7. 7.

    Dudescu C, Naumann J, Stockmann M, Nebel S (2006) Characterisation of thermal expansion coefficient of anisotropic materials by electronic speckle pattern interferometry. Strain 42(3):197–205

  8. 8.

    Grant B, Stone H, Withers P, Preuss M (2009) High-temperature strain field measurement using digital image correlation. J Strain Anal Eng Des 44:263–271

  9. 9.

    Harding J,Wood E, Campbell J (1960) Tensile testing of materials at impact rates of strain. J Mech Eng Sci 2(2):88–96

  10. 10.

    Keh A, Nakada Y, Leslie W (1968) Dislocation Dynamics, chap. Dynamic strain aging in iron and steel. McGraw-Hill, pp 381–408

  11. 11.

    Kolsky H (1949) An investigation of mechanical properties of materials at very high rates of loading. Proc Phys Soc Sect B 62:676–700

  12. 12.

    Liu J, Lyons J, Sutton M, Reynolds A (1998) Experimental characterization of crack tip deformation fields in alloy 718 at high temperatures. J Eng Mater Technol 120:71–78

  13. 13.

    Liu J, Sutton M, Lyons J, Deng X (1998) Experimental investigation of near crack tip creep deformation in alloy 800 at 650°C. Int J Fract 91:233–268

  14. 14.

    Løckberg O, Malmo J, Slettemoen G (1985) Interferometric measurement of high temperature objects by electronic speckle pattern interferometry. Appl Opt 24(19):3167–3172

  15. 15.

    Luo G, Wu J, Fan J, Shi H, Lin Y, Zhang J (2004) Deformation behaviour of an ultrahigh carbon steel (UHCS-3.0Si) at elevated temperature. Mater Sci Eng A 379:302–307

  16. 16.

    Lyons J, Liu J, Sutton M (1996) High-temperature deformation measurements using digital image correlation. Exp Mech 36:64–70

  17. 17.

    Pan B, Wu D, Xia Y (2010) High-temperature deformation field measurement by combining transient aerodynamic heating simulation system and reliability-guided digital image correlation. Opt Lasers Eng 48(9):841–848

  18. 18.

    Post D, Wood J (1989) Determination of thermal strains by moiró interferometry. Exp Mech 29(3):318–322

  19. 19.

    Raujol-Veillé J, Toussaint F, Tabourot L, Vautrot M, Balland P (2011) EF simulation of a steel thin-wall short-tube forming process. In: AIP conference proceedings, vol 1353, p 258

  20. 20.

    Sène N, Balland P, Arrieux R, Moreau J (2011) Micro-deep drawing on aluminium crystals in order to validate multiscale modeling. Exp Mech 51(6):1007–1016

  21. 21.

    Sène N, Balland P, Arrieux R, Vacher P (2011) Determination and validation of micro-forming limit diagrams for very thin materials. Int J Mater Form:1–8

  22. 22.

    Sharpe W (2009) A high-frequency high-temperature optical strain/displacement gage. Exp Mech 50(2):227–237

  23. 23.

    Spittel M, Spittel T (2009) Springer Materials - The Landolt-Börnstein Database, chap. Steel symbol/number: C67/1.0603. Springer Berlin Heidelberg

  24. 24.

    Tarigopula V, Hopperstad O, Clausen A, Langseth M (2009) Effect of pre-straining on localisation and fracture of dual-phase steel at elevated rates of strain. In: DYMAT 2009-9th international conference on the mechanical and physical behaviour of materials under dynamic loading, vol 1, pp 801–807

  25. 25.

    Tarigopula V, Hopperstad O, Langseth M, Clausen A, Hild F (2008) A study of localisation in dual-phase high-strength steels under dynamic loading using digital image correlation and FE analysis. Int J Solids Struct 45(2):601–619

  26. 26.

    Vacher P, Dumoulin S, Morestin F, Mguil-Touchal S (1999) Bidimentional strain measurement using digital images. In: Proceedings of the institution of mechanical engineers, Journal of Mechanical Engineering Science vol 213, no 8, pp 811–817

  27. 27.

    Verleysen P, Degrieck J (2004) Experimental investigation of the deformation of hopkinson bar specimens. Int J Impact Eng 30(3):239–253

  28. 28.

    Vilamosa V, Clausen A, Hopperstad O, Børvik T, Skjervold S (2012) Measurement of local strain and heat propagation during high-temperature testing in a split-hopkinson tension bar system. In: EPJ web of conferences, vol 26

  29. 29.

    Völkl R, Fischer B (2004) Mechanical testing of ultra-high temperature alloys. Exp Mech 44(2):121–127

  30. 30.

    Völkl R, Fischer B, Beschliesser M, Glatzel U (2008) Evaluating strength at ultra-high temperatures methods and results.Mater Sci Eng A 483–484:587–589

  31. 31.

    Wagner D, Moreno J, Prioul C (1998) Dynamic strain aging sensitivity of heat affected zones in C–Mn steels. J Nucl Mater 252(3):257–265

  32. 32.

    Yang L, Ettemeyer A (2003) Strain measurement by threedimensional electronic speckle pattern interferometry: potentials, limitations, and applications. Opt Eng 42(5):1257–1266

  33. 33.

    Zhang Z, Hauge M, Ødegård J, Thaulow C (1999) Determining material true stress-strain curve from tensile specimens with rectangular cross-section. Int J Solids Struct 36(23):3497–3516

Download references

Author information

Correspondence to M. Vautrot.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vautrot, M., Balland, P., Hopperstad, O.S. et al. Experimental Technique to Characterize the Plastic Behaviour of Metallic Materials in a Wide Range of Temperatures and Strain Rates: Application to a High-Carbon Steel. Exp Mech 54, 1163–1175 (2014). https://doi.org/10.1007/s11340-013-9839-x

Download citation

Keywords

  • High temperature
  • High strain rate
  • High-carbon steel