Advertisement

Experimental Mechanics

, Volume 53, Issue 8, pp 1357–1370 | Cite as

Demodulation of Spatial Carrier Images: Performance Analysis of Several Algorithms Using a Single Image

  • C. Badulescu
  • M. Bornert
  • J.-C. Dupré
  • S. Equis
  • M. Grédiac
  • J. MolimardEmail author
  • P. Picart
  • R. Rotinat
  • V. Valle
  • Workgroup “Metrology” of the French CNRS research network 2519 “Mesures de Champs et Identification en Mécanique des Solides/Full-field measurements and identification in solid mechanics”.
Article

Abstract

Optical full-field techniques have a great importance in modern experimental mechanics. Even if they are reasonably spread among the university laboratories, their diffusion in industrial companies remains very narrow for several reasons, especially a lack of metrological performance assessment. A full-field measurement can be characterized by its resolution, bias, measuring range, and by a specific quantity, the spatial resolution. The present paper proposes an original procedure to estimate in one single step the resolution, bias and spatial resolution for a given operator (decoding algorithms such as image correlation, low-pass filters, derivation tools …). This procedure is based on the construction of a particular multi-frequential field, and a Bode diagram representation of the results. This analysis is applied to various phase demodulating algorithms suited to estimate in-plane displacements.

Keywords

Fringe Error assessment Spatial resolution Displacement resolution Benchmark 

Notes

Acknowledgments

The authors and all the participants of this benchmark are grateful to the CNRS for supporting this research.

References

  1. 1.
    SPOTS Standardization project for optical techniques of strain measurements, EU contract G6RD-CT-2002-00856, see http://www.opticalstrain.org
  2. 2.
    Burguete R, Hack E, Patterson E, Siebert T, Whelan M (2010) Guidelines for the calibration of optical systems for strain measurements, Part I: calibration, see http://www.opticalstrain.org
  3. 3.
    Burguete R, Hack E, Patterson E, Siebert T, Whelan M (2010) Guidelines for the calibration of optical systems for strain measurements, Part II: validation, see http://www.opticalstrain.org
  4. 4.
  5. 5.
    Bornert M, Brémand F, Doumalin P, Dupré J-C, Fazzini M, Grédiac M, Hild F, Mistou S, Molimard J, Orteu J-J, Robert L, Surrel Y, Vacher P, Wattrisse B (2009) Assessment of digital image correlation measurement errors: methodology and results. Exp Mech 49(3):353–370CrossRefGoogle Scholar
  6. 6.
    Kobayashi AS (ed) (1993) Handbook on experimental mechanics, 2nd edn. Society for Experimental Mechanics. SEM and VCH, BethelGoogle Scholar
  7. 7.
    Cloud G (1998) Optical methods of engineering analysis. Cambridge University Press, CambridgeGoogle Scholar
  8. 8.
    Osten W (2000) Digital processing and evaluation of fringe patterns in optical metrology and non-destructive testing. In: Laermann K-H (ed) Optical methods in experimental solid mechanics. Springer, CISM 403. Springer, pp 289–422Google Scholar
  9. 9.
    Surrel Y (2000) Fringe analysis. In: Rastogi PK (ed) Photomechanics, Topics Appl. Phys. 77. Springer, pp 55–102Google Scholar
  10. 10.
    Surrel Y (1997) Additive noise effect in digital phase detection. Appl Opt 36(1):271–276CrossRefGoogle Scholar
  11. 11.
    Brémand F (1994) A phase unwrapping technique for object relief determination. Opt Lasers Eng 21(1–2):49–60CrossRefGoogle Scholar
  12. 12.
    Sciammarella CA, Lamberti L, Sciammarella FM (2005) High-accuracy contouring using projection moiré. Optical Engineering 44(9): art. no. 093605Google Scholar
  13. 13.
    Surrel Y, Fournier N, Grédiac M, Paris P-A (1999) Phase stepped deflectometry applied to shape measurement of bent plates. Exp Mech 39(1):66–70CrossRefGoogle Scholar
  14. 14.
    Surrel Y (1996) Design of algorithms for phase measurements by the use of phase-stepping. J Appl Optic 35(1):51–60CrossRefGoogle Scholar
  15. 15.
    Meinlschmidt P, Hinsch K, Sirohi R (eds) (1996) Selected papers on electronic speckle pattern interferometry: Principle and practice. Vol. MS 132. SPIE Optical Engineering PressGoogle Scholar
  16. 16.
    Rastogi PK (ed) (2000) Photomechanics (TAP/77). Springer, BerlinGoogle Scholar
  17. 17.
    Jacquot P, Fournier J-M (eds) (2000) Interferometry in speckle light. Springer, BerlinGoogle Scholar
  18. 18.
    Post D, Han B, Ifju P (1994) High sensitivity moire: Experimental analysis for mechanics & materials (mechanical engineering series). Springer, BerlinCrossRefGoogle Scholar
  19. 19.
    Morimoto Y, Nomura T, Fujigaki M, Yoneyama S, Takahashi I (2005) Deformation measurement by phase-shifting digital holography. Exp Mech 45(1):65–70CrossRefGoogle Scholar
  20. 20.
    Picart P, Diouf B, Lolive E, Berthelot J-M (2004) Investigation of fracture mechanisms in resin concrete using spatially multiplexed digital Fresnel holograms. Opt Eng 43(5):1169–1176CrossRefGoogle Scholar
  21. 21.
    Lee J-R, Molimard J, Vautrin A, Surrel Y (2004) Digital phase-shifting grating shearography for experimental analysis of fabric composites under tension. Compos A Appl Sci Manuf 35(7–8):849–859CrossRefGoogle Scholar
  22. 22.
    Dorrío BV, Fernández JL (1999) Phase-evaluation methods in whole-field optical measurement techniques. Meas Sci Technol 10(3):R33–R55CrossRefGoogle Scholar
  23. 23.
    Cordero R, Molimard J, Martinez A, Labbé F (2007) Uncertainty analysis of temporal phase-stepping algorithms for interferometry. Opt Commun 275:144–155CrossRefGoogle Scholar
  24. 24.
    Takeda M, Ina H, Kobayashi S (1982) Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J Opt Soc Am 72(1):156–160CrossRefGoogle Scholar
  25. 25.
    Desse J-M, Picart P, Tankam P (2008) Digital three-color holographic interferometry for flow analysis. Opt Express 16(8):5471–5480CrossRefGoogle Scholar
  26. 26.
    Xianyu S, Chen W (2001) Fourier transform profilometry: a review. Opt Lasers Eng 35(5):263–284CrossRefGoogle Scholar
  27. 27.
    Rajaona RD, Sulmont P (1985) A method of spectral analysis applied to periodic and pseudoperiodic signals. J Comput Phys 61(1):186–193MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Dupré J-C, Brémand F, Lagarde A (1993) Numerical spectral analysis of a grid: application to strain measurements. Opt Lasers Eng 18(3):159–172CrossRefGoogle Scholar
  29. 29.
    Doumalin P, Bornert M (2000) Micromechanical applications of digital image correlation techniques. In: Jacquot P, Fournier J-M (eds) Interferometry in speckle light. Springer, Lausanne, pp 67–74CrossRefGoogle Scholar
  30. 30.
    Cottron M, Brémand F, Lagarde A (1992) Non-contact and non-disturbing local strain measurement methods part II: application. Eur J Mech 11(3):367–379Google Scholar
  31. 31.
    Pannier Y, Avril S, Rotinat R, Pierron F (2006) Identification of elasto-plastic constitutive parameters from statically undetermined tests using the virtual fields method. Exp Mech 46(6):735–755CrossRefGoogle Scholar
  32. 32.
    Cordero RR, Molimard J, Labbé F, Martínez A (2008) Strain maps obtained by phase-shifting interferometry: An uncertainty analysis. Opt Commun 281(8):2195–2206CrossRefGoogle Scholar
  33. 33.
    Badulescu C, Grédiac M, Mathias J-D, Roux D (2009) A procedure for accurate one-dimensional strain measurement using the grid method. Exp Mech 49(6):841–854CrossRefGoogle Scholar
  34. 34.
    Avril S, Vautrin A, Surrel Y (2004) Grid method: application to the characterization of cracks. Exp Mech 44(1):37–43CrossRefGoogle Scholar
  35. 35.
    Moulart R, Rotinat R, Pierron F (2009) Full-field evaluation of the onset of microplasticity in a steel specimen. Mech Mater 41(11):1207–1222CrossRefGoogle Scholar
  36. 36.
    Pastor ML, Balandraud X, Robert JL, Grédiac M (2009) Lifetime prediction of aluminium structures reinforced with composite patches. Int J Fatigue 31(5):850–858CrossRefGoogle Scholar
  37. 37.
    Robin E, Valle V (2004) Phase demodulation from a single fringe pattern based on a correlation technique. J Appl Optic 43(22):4355–4361CrossRefGoogle Scholar
  38. 38.
    Robin E, Valle V, Brémand F (2005) Phase demodulation method from a single fringe pattern based on correlation with a polynomial form. J Appl Optic 44(34):7261–7269CrossRefGoogle Scholar
  39. 39.
    Héripré E, Dexet M, Crépin J, Gélébart L, Roos A, Bornert M, Caldemaison D (2207) Coupling between experimental measurements and polycrystal finite element calculations for micromechanical study of metallic materials. Int J Plast 23(9):1512–1539CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2013

Authors and Affiliations

  • C. Badulescu
    • 1
  • M. Bornert
    • 2
  • J.-C. Dupré
    • 3
  • S. Equis
    • 4
  • M. Grédiac
    • 5
  • J. Molimard
    • 6
    Email author
  • P. Picart
    • 7
  • R. Rotinat
    • 8
  • V. Valle
    • 3
  • Workgroup “Metrology” of the French CNRS research network 2519 “Mesures de Champs et Identification en Mécanique des Solides/Full-field measurements and identification in solid mechanics”.
    • 9
  1. 1.LBMS, EA 4325, ENIB-ENSTA-UBOBrestFrance
  2. 2.Laboratoire Navier, UMR 8205, CNRS-École des Ponts ParisTechChamps-sur-MarneFrance
  3. 3.Institut P’, UPR 3346, CNRS-Université de Poitiers-ENSMAFuturoscope ChasseneuilFrance
  4. 4.EPFL, Nanophotonics and Metrology LaboratoryLausanneSwitzerland
  5. 5.Institut Pascal, UMR 6602, Université Blaise Pascal-CNRSClermont-FerrandFrance
  6. 6.LGF, UMR 5307, Ecole Nationale Supérieure des Mines, CIS-EMSE, CNRSSaint-EtienneFrance
  7. 7.LAUM, UMR 6613, CNRS-Université du MaineLe MansFrance
  8. 8.MSMP Laboratory, Arts et Métiers ParisTechChâlons-en-ChampagneFrance
  9. 9.

Personalised recommendations