Advertisement

Experimental Mechanics

, Volume 53, Issue 6, pp 1039–1055 | Cite as

Anisotropic Hardening of Sheet Metals at Elevated Temperature: Tension-Compressions Test Development and Validation

  • M. G. Lee
  • J. H. Kim
  • D. Kim
  • O. S. Seo
  • N. T. Nguyen
  • H. Y. KimEmail author
Article

Abstract

New test equipment has been developed to measure the in-plane cyclic behavior of sheet metals at elevated temperatures. The tester has clamping dies with adjustable side force to prevent the sheet specimens from buckling during compressive loading. In addition to the room temperature experiment, cartridge type heaters are inserted in the clamping dies so that the specimen can be heated up to 400 °C during the cyclic tests. For the strain measurement, a non-contact type laser extensometer is used. In order to validate the newly developed test device, the tension-compression (and compression-tension) tests under pre-strains and various temperatures have been performed. As model materials, the aluminum alloy sheet which exhibits a large Bauschinger effect and the magnesium alloy sheet which exhibits different amounts of asymmetry under cyclic loading are used. The developed device can be well-suited to measure the cyclic material behavior, especially the anisotropic and asymmetric hardening of light-weight materials.

Keywords

Experimental device Tension-compression test Bauschinger effect Asymmetric hardening Elevated temperature Magnesium alloys Aluminum alloys 

Notes

Acknowledgement

H.Y. Kim appreciates the support by the Mg Material R&D Project for the Super-light Vehicle operating for the execution of WPM program funded by the Ministry of Knowledge Economy, Republic of Korea. M.G. Lee appreciates the partial support by the grants from the Industrial Source Technology Development Program (#10040078) of Ministry of Knowledge and Economy and from the Ministry of Education, Science and Technology (NRF-2012R1A5A1048294). J. H. Kim and D. Kim appreciate the support from the Fundamental Research Program of the Korea Institute of Materials Science (KIMS), South Korea. The previous works by Professor R.H. Wagoner at Ohio State University and Prof. Kuwabara became great motivations of the present experimental works.

Supplementary material

ESM 1

(AVI 3,672 kb)

References

  1. 1.
    Chaboche JL (2008) A review of some plasticity and viscoplasticity constitutive theories. Int J Plast 24:642–1693CrossRefGoogle Scholar
  2. 2.
    Chung K, Lee MG, Kim D, Kim C, Wenner ML, Barlat F (2005) Spring-back evaluation of automotive sheets based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions: Part I: Theory and formulation. Int J Plast 21:861–882zbMATHGoogle Scholar
  3. 3.
    Yoshida F, Uemori T (2002) A model of large-strain cyclic plasticity describing the Bauschinger effect and work hardening stagnation. Int J Plast 18:661–686zbMATHCrossRefGoogle Scholar
  4. 4.
    Lee MG, Kim D, Kim C, Wenner ML, Wagoner RH, Chung K (2005) Spring-back evaluation of automotive sheets based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions: Part II: Characterization of material properties. Int J Plast 21:883–914zbMATHGoogle Scholar
  5. 5.
    Lee MG, Kim D, Kim C, Wenner ML, Chung K (2005) Spring-back evaluation of automotive sheets based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions, part III: Applications. Int J Plast 21:915–953zbMATHCrossRefGoogle Scholar
  6. 6.
    Lee MG, Wagoner RH, Lee JK, Chung K, Kim HY (2008) Constitutive Modeling for Anisotropic/Asymmetric Hardening Behavior of Magnesium Alloy Sheets. Int J Plast 24:545–582zbMATHCrossRefGoogle Scholar
  7. 7.
    Lee MG, Kim JH, Chung K, Kim SJ, Wagoner RH, Kim HY (2009) Analytical springback model for lightweight hexagonal close-packed sheet metal. Int J Plast 25:399–419zbMATHCrossRefGoogle Scholar
  8. 8.
    Barlat F, Gracio JJ, Lee M-G, Rauch EF, Vincze G (2011) An alternative to kinematic hardening in classical plasticity. Int J Plast 27:1309–1327zbMATHCrossRefGoogle Scholar
  9. 9.
    Lee JW, Lee MG, Barlat F (2012) Finite element modeling using homogeneous anisotropic hardening and application to spring-back prediction. Int J Plast 29:13–41CrossRefGoogle Scholar
  10. 10.
    Lee JY, Lee M-G, Barlat F (2012) An application of homogeneous anisotropic hardening to springback prediction in pre-strained U-draw/bending. Int J Solids Struct 49:3562–3572. doi: 10.1016/j.ijsolstr.2012.03.042
  11. 11.
    Anand L, Kalindindi SR (1994) The process of shear band formation in plane strain compression of FCC metals: efforts of crystallographic texture. Mech Mater 17:223CrossRefGoogle Scholar
  12. 12.
    Chen Z, Maekawa S, Takeda T (1999) Bauschinger effect and multiaxial yield behavior of stress-reverse mild steel. Metall Mater Trans A 30:3069CrossRefGoogle Scholar
  13. 13.
    Vincze G, Rauch EF, Gracio JJ, Barlat F, Lopes AB (2005) A comparison of the mechanical behavior of an AA1050 and a low carbon steel deformed upon strain reversal. Acta Mater 53:1005–1013CrossRefGoogle Scholar
  14. 14.
    Geng LM, Shen Y, Wagoner RH (2002) Anisotropic hardening equations derived from reverse-bend testing. Int J Plast 18:743–767zbMATHCrossRefGoogle Scholar
  15. 15.
    Sanchez LR (2000) A new cyclic anisotropic model for plane strain sheet metal forming. Int J Mech Sci 42:705–728zbMATHCrossRefGoogle Scholar
  16. 16.
    Weinmann KJ, Rosenberger AH, Sanchez LR (1988) The Bauschinger effect of sheet metal under cyclic reverse pure bending. Ann CIRP 37:289–293CrossRefGoogle Scholar
  17. 17.
    Brunet M, Morestin F, Godereaux S (2001) Nonlinear kinematic hardening identification for anisotropic sheet metals with bending-unbending tests. J Eng Mater Technol Trans ASME 123:378–383CrossRefGoogle Scholar
  18. 18.
    Eggertsen PA, Mattiasson K (2010) On constitutive modeling for springback analysis. Int J Mech Sci 52:804–818CrossRefGoogle Scholar
  19. 19.
    Perduijn AB, Hoogenboom SM (1995) The pure bending of sheet. J Mater Process Technol 51:274–295CrossRefGoogle Scholar
  20. 20.
    Yoshida F, Urabe M, Toropov VV (1998) Identification of material parameters in constitutive model for sheet metals from cyclic bending tests. Int J Mech Sci 40:237–249CrossRefGoogle Scholar
  21. 21.
    Boers SHA, Geers MGD, Kouznetsova VG (2010) Contactless and Frictionless Pure Bending – Principles, Equipment and Experimental Opportunities. Exp Mech 50:683–693CrossRefGoogle Scholar
  22. 22.
    Abel A, Ham RK (1966) The cyclic behavior of crystals of aluminum-4 weight percent copper: I Bauschinger effect. Acta Metall 14:1489CrossRefGoogle Scholar
  23. 23.
    Bate PS, Wilson DV (1986) Analysis of Bauschinger effect. Acta Metall 34:1097CrossRefGoogle Scholar
  24. 24.
    Ramberg W, Miller JA (1946) Determination and presentation of compressive stress–strain data for thin sheet metal. J Aeronaut Sci 13:569Google Scholar
  25. 25.
    Tan Z, Magnusson C, Persson B (1994) The Bauschinger effect in compression-tension of sheet materials. Mater Sci Eng A 183:31CrossRefGoogle Scholar
  26. 26.
    Boger RK, Wagoner RH, Barlat F, Lee M-G, Chung K (2005) Continuous, large strain, tension-compression testing of sheet material. Int J Plast 21:2319zbMATHCrossRefGoogle Scholar
  27. 27.
    Kuwabara T, Nagata K, Nakako T (2001) Measurement and analysis of the Bauschinger effect of sheet metals subjected to in-plane stress reversals. In: Torralba JM (ed) Proceedings of AMPT’01. Univ. Carlos III de Madrid, Madrid, pp 407–412Google Scholar
  28. 28.
    Cao J, Lee W, Cheng HS, Seniw M, Wang H-P, Chung K (2009) Experimental and numerical investigation of combined isotropic-kinematic hardening behavior of sheet metals. Int J Plast 25:942–972zbMATHCrossRefGoogle Scholar
  29. 29.
    Piao K, Lee JK, Kim JH, Kim HY, Chung K, Barlat F, Wagoner RH (2012) A Sheet Tension/Compression Test for Elevated Temperature. Int J Plast 38:27–46. doi: 10.1016/j.ijplas.2012.03.009
  30. 30.
    Kuwabara T (2005) Advances of plasticity experiments on metal sheets and tubes and their applications to constitutive modeling. In: Smith LM et al (Eds) Proceedings of NUMISHEET 2005, p 20Google Scholar
  31. 31.
    Bae GH, Huh H (2011) Tension/compression test of auto-body steel sheets with the variation of the pre-strain and the strain rate. Trans Eng Sci 72:213–225Google Scholar
  32. 32.
    Makinouchi A, Nakamachi E, Onate E, Wagoner RH (Eds) (1993) NUMISHEET93 - 2nd international conference on numerical simulation of 3-D sheet metal forming processGoogle Scholar
  33. 33.
    Dafalias YF, Popov EP (1976) Plastic internal variables formalism of cyclic plasticity. J Appl Mech 98:645–651CrossRefGoogle Scholar
  34. 34.
    Lee MG, Kim D, Kim C, Wenner ML, Wagoner RH, Chung K (2007) A practical two-surface plasticity model and its application to spring-back prediction. Int J Plast 23:1189–1212CrossRefGoogle Scholar
  35. 35.
    Lou X, Li M, Boger R, Agnew S, Wagoner R (2007) Hardening evolution of AZ31B Mg sheet. Int J Plast 23:44–86zbMATHCrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2012

Authors and Affiliations

  • M. G. Lee
    • 1
  • J. H. Kim
    • 2
  • D. Kim
    • 2
  • O. S. Seo
    • 3
  • N. T. Nguyen
    • 3
  • H. Y. Kim
    • 3
    Email author
  1. 1.Graduate Institute of Ferrous TechnologyPohang University of Science and TechnologyGyeongbukRepublic of Korea
  2. 2.Materials Deformation DepartmentKorea Institute of Materials ScienceGyeongnamRepublic of Korea
  3. 3.Department of Mechanical and Biomedical EngineeringKangwon National UniversityGangwon-DoRepublic of Korea

Personalised recommendations