Advertisement

Experimental Mechanics

, Volume 53, Issue 5, pp 807–818 | Cite as

Absolute Nodal Coordinates in Digital Image Correlation

  • M. Langerholc
  • J. Slavič
  • M. Boltežar
Article

Abstract

A great deal of progress has been made in recent years in the field of global digital image correlation (DIC), where higher-order, element-based approaches were proposed to improve the interpolation performance and to better capture the displacement fields. In this research, another higher-order, element-based DIC procedure is introduced. Instead of the displacements, the elements’ global nodal positions and nodal position-vector gradients, defined according to the absolute nodal coordinate formulation, are used as the searched parameters of the Newton–Raphson iterative procedure. For the finite elements, the planar isoparametric plates with 24 nodal degrees of freedom are employed to ensure the gradients’ continuity among the elements. As such, the presented procedure imposes no linearization on the strain measure, and therefore indicates a natural consistency with the nonlinear continuum theory. To verify the new procedure and to show its advantages, a real large deformation experiment and several numerical tests on the computer-generated images are studied for the standard, low-order, element-based digital image correlation and the presented procedure. The results show that the proposed procedure proves to be accurate and reliable for describing the rigid-body movement and simple deformations, as well as for determining the continuous finite strain field of a real specimen.

Keywords

Absolute nodal coordinate formulation Digital image correlation Higher-order plate element Large deformation 

Notes

Acknowledgement

Operation partially financed by the European Union, European Social Fund.

References

  1. 1.
    Witz J, Hild F, Roux S, Rieunier J (2009) Mechanical properties of crimped mineral wools: identification from digital image correlation. In: IUTAM symposium on mechanical properties of cellular materials, IUTAM Bookseries, vol 12, pp 135–147Google Scholar
  2. 2.
    Zhang J, Cai Y, Ye W, Yu T (2011) On the use of the digital image correlation method for heterogeneous deformation measurement of porous solids. Opt Lasers Eng 49(2):200–209CrossRefGoogle Scholar
  3. 3.
    Tarigopula V, Hopperstad O, Langseth M, Clausen A, Hild F, Lademo O, Eriksson M (2008) A study of large plastic deformations in dual phase steel using digital image correlation and FE analysis. Exp Mech 48:181–196CrossRefGoogle Scholar
  4. 4.
    Hild F, Roux S (2007) Digital image mechanical identification (DIMI). Exp Mech 48(4):495–508Google Scholar
  5. 5.
    Perie J, Leclerc H, Roux S, Hild F (2009) Digital image correlation and biaxial test on composite material for anisotropic damage law identification. Int J Solids Struct 46(11–12):2388–2396zbMATHCrossRefGoogle Scholar
  6. 6.
    Pan B, Qian K, Xie H, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 20(6):062,001CrossRefGoogle Scholar
  7. 7.
    Cheng P, Sutton M, Schreier H, McNeill S (2002) Full-field speckle pattern image correlation with B-spline deformation function. Exp Mech 42:344–352CrossRefGoogle Scholar
  8. 8.
    Sun Y, Pang J, Wong C, Su F (2005) Finite element formulation for a digital image correlation method. Appl Opt 44(34):7357–7363CrossRefGoogle Scholar
  9. 9.
    Besnard G, Hild F, Roux S (2006) Finite-element displacement fields analysis from digital images: application to portevin—le chatelier bands. Exp Mech 46:789–803CrossRefGoogle Scholar
  10. 10.
    Elguedj T, Rethore J, Buteri A (2011) Isogeometric analysis for strain field measurements. Comput Methods Appl Mech Eng 200(1–4):40–56CrossRefGoogle Scholar
  11. 11.
    Ma S, Zhao Z, Wang X (2012) Mesh-based digital image correlation method using higher order isoparametric elements. J Strain Anal Eng Des 47:163–175CrossRefGoogle Scholar
  12. 12.
    Hild F, Roux S, Gras R, Guerrero N, Eugenia M, Flórez-López J (2009) Displacement measurement technique for beam kinematics. Opt Lasers Eng 47:495–503CrossRefGoogle Scholar
  13. 13.
    Rethore J, Elguedj T, Simon P, Coret M (2010) On the use of NURBS functions for displacement derivatives measurement by digital image correlation. Exp Mech 50:1099–1116CrossRefGoogle Scholar
  14. 14.
    Hild F, Raka B, Baudequin M, Roux S, Cantelaube F (2002) Multi-scale displacement field measurements of compressed mineral wool samples by digital image correlation. Appl Opt 41:6815–6828CrossRefGoogle Scholar
  15. 15.
    Shabana A (2008) Computational continuum mechanics. Cambridge University PressGoogle Scholar
  16. 16.
    Shabana A (1998) Computer implementation of the absolute nodal coordinate formulation for flexible multibody dynamics. Nonlinear Dyn 16:293–306MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Shabana A (1997) Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody Syst Dyn 1:339–348MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Shabana A, Mikkola A (2003) On the use of the degenerate plate and the absolute nodal co-ordinate formulations in multibody system applications. J Sound Vib 259(2):481–489CrossRefGoogle Scholar
  19. 19.
    Yu L, Zhao Z, Tang J, Ren G (2010) Integration of absolute nodal elements into multibody system. Nonlinear Dyn 62:931–943MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Dufva K, Shabana A (2005) Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc Inst Mech Eng, Proc Part K, J Multi-Body Dyn 219:345–355Google Scholar
  21. 21.
    Čepon G, Boltežar M (2009) Dynamics of a belt-drive system using a linear complementarity problem for the belt-pulley contact description. J Sound Vib 319(3–5):1019–1035Google Scholar
  22. 22.
    Čepon G, Boltežar M (2009) Introduction of damping into the flexible multibody belt-drive model: a numerical and experimental investigation. J Sound Vib 324(1–2):283–296Google Scholar
  23. 23.
    Dmitrochenko O, Pogorelov D (2003) Generalization of plate finite elements for absolute nodal coordinate formulation. Multibody Syst Dyn 10:17–43zbMATHCrossRefGoogle Scholar
  24. 24.
    Sereshk V, Salimi M (2011) Comparison of finite element method based on nodal displacement and absolute nodal coordinate formulation (ANCF) in thin shell analysis. Int J Numer Meth Bio 27(8):1185–1198MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Shabana A, Maqueda L (2008) Slope discontinuities in the finite element absolute nodal coordinate formulation: gradient deficient elements. Multibody Syst Dyn 20:239–249MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Guo B, Giraudeau G, Pierron F, Avril S (2008) Viscoelastic material properties’ identification using full field measurements on vibrating plates, p 737565. SPIEGoogle Scholar
  27. 27.
    Avril S, Bonnet M, Bretelle A, Grédiac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco E, Pierron F (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Exp Mech 48:381–402CrossRefGoogle Scholar
  28. 28.
    Zienkiewicz O, Taylor R (2000) Finite element method, vol 1, 5th edn. The Basis, ElsevierzbMATHGoogle Scholar
  29. 29.
    Bing P, Hui-min X, Bo-qin X, Fu-long D (2006) Performance of sub-pixel registration algorithms in digital image correlation. Meas Sci Technol 42:1615–1621 CrossRefGoogle Scholar
  30. 30.
    Vendroux G, Knauss W (1998) Submicron deformation field measurements: Part 2. Improved digital image correlation. Exp Mech 38:86–92CrossRefGoogle Scholar
  31. 31.
    Zhu Z, Pour B (2011) A nodal position finite element method for plane elastic problems. Finite Elem Anal Des 47(2):73–77MathSciNetCrossRefGoogle Scholar
  32. 32.
    Gonzales R, Woods R, Eddins S (2009) Digital image processing using Matlab, 2nd edn. Gatesmark PublishingGoogle Scholar
  33. 33.
    Langerholc M, Česnik M, Slavič J, Boltežar M (2012) Experimental validation of a complex, large-scale, rigid-body mechanism. Eng Struct 36:220–227CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2012

Authors and Affiliations

  1. 1.Knauf Insulation d.o.o., CEEŠkofja LokaSlovenia
  2. 2.Faculty of Mechanical EngineeringLjubljanaSlovenia

Personalised recommendations