# Diffraction Assisted Image Correlation: A Novel Method for Measuring Three-Dimensional Deformation using Two-Dimensional Digital Image Correlation

- 1.3k Downloads
- 37 Citations

## Abstract

Digital Image Correlation (DIC) provides a full-field non-contact optical method for accurate deformation measurement of materials, devices and structures. The measurement of three-dimensional (3D) deformation using DIC in general requires imaging with two cameras and a 3D-DIC code. In the present work, a new experimental technique, namely, Diffraction Assisted Image Correlation (DAIC) for 3D displacement measurement using a single camera and 2D-DIC algorithm is presented. A transmission diffraction grating is placed between the specimen and the camera, resulting in multiple images which are then used to obtain apparent in-plane displacements using 2D-DIC. The true in-plane and out-of-plane displacements of the specimen are obtained from the apparent in-plane displacements and the diffraction angle of the grating. The validity and accuracy of the DAIC method are demonstrated through 3D displacement measurement of a small thin membrane. This technique provides new avenues for performing 3D deformation measurements at small length scales and/or dynamic loading conditions.

## Keywords

3D digital image correlation Diffraction Small scale Membrane Displacement## Notes

### Acknowledgments

The research reported in this paper was conducted while SX was a postdoctoral scholar and AG was a summer undergraduate research fellow (SURF) in the Graduate Aerospace Laboratories at the California Institute of Technology (GALCIT). It was supported by the Caltech Center for the Predictive Modeling and Simulation of High-Energy Density Dynamic Response of Materials through the U.S. Department of Energy’s National Nuclear Security Administration Award# DE-FC52-08NA28613, which is gratefully acknowledged. The authors thank M. Mello and J. Notbohm for stimulating discussions.

## References

- 1.Peters WH, Ranson WF (1982) Digital imaging techniques in experimental stress analysis. Opt Eng 21:427–431Google Scholar
- 2.Sutton MA, Wolters WJ, Peters WH, Ranson WF, McNeill SR (1983) Determination of displacements using an improved digital correlation method. Image Vision Comput 1:133–139CrossRefGoogle Scholar
- 3.Chu TC, Ranson WF, Sutton WA, Peters WH (1985) Applications of digital-image-correlation techniques to experimental mechanics. Exp Mech 25:232–244CrossRefGoogle Scholar
- 4.Sutton MA, Li N, Joy DC, Reynolds AP, Li X (2007) Scanning electron microscopy for quantitative small and large deformation measurements, Part I: SEM imaging at magnifications from 200 to 10,000. Exp Mech 47:775–787CrossRefGoogle Scholar
- 5.Sutton MA, Orteu JJ, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, New YorkGoogle Scholar
- 6.Choi S, Shah SP (1997) Measurement of deformations of concrete subjected to compression using image correlation. Exp Mech 37:307–331CrossRefGoogle Scholar
- 7.Vendroux G, Knauss WG (1998) Submicron deformation field measurements: part 2. Improved digital image correlation. Exp Mech 38:86–92CrossRefGoogle Scholar
- 8.Luo PF, Chao YJ, Sutton MA, Peters WH (1993) Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision. Exp Mech 33:123–132CrossRefGoogle Scholar
- 9.Helm JD, McNeill SR, Sutton MA (1998) Improved three dimensional image correlation for surface displacement measurement. Opt Eng 35:1991–1920Google Scholar
- 10.Pan B, Qian K, Xie H, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 20:062001CrossRefGoogle Scholar
- 11.Orteu JJ (2009) 3-D computer vision in experimental mechanics. Opt Laser Eng 47:282–291CrossRefGoogle Scholar
- 12.Tong W (2004) Plastic surface strain mapping of bent sheets by image correlation. Exp Mech 44:502–511CrossRefGoogle Scholar
- 13.Tay CJ, Quan C, Huang YH, Fu Y (2005) Digital image correlation for whole field out-of-plane measurement using a single camera. Opt Commun 251:23–36CrossRefGoogle Scholar
- 14.Quan C, Tay CJ, Sun W, He X (2008) Determination of three dimensional displacement using two-dimensional digital image correlation. Appl Opt 47:583–593CrossRefGoogle Scholar
- 15.Pankow M, Justusson B, Waas AM (2010) Three-dimensional digital image correlation technique using single high-speed camera for measuring large out-of-plane displacements at high framing rates. Appl Opt 49:3418–3427CrossRefGoogle Scholar
- 16.Dally JW, Riley WF (1991) Experimental stress analysis, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
- 17.Tippur HV, Krishnaswamy S, Rosakis AJ (1991) A coherent gradient sensor for crack tip deformation measurements: analysis and experimental results. Int J Fract 48:193–204CrossRefGoogle Scholar
- 18.Hu Z, Xie H, Hua T, Wang Z (2009) Advanced intensity correlation method for evaluating Poisson’s ratio of fiberlike material. Rev Sci Instrum 80:013105CrossRefGoogle Scholar
- 19.Brauser S, Kromm A, Kannengiesser T, Rethmeier M (2010)
*In-situ*synchrotron diffraction and digital image correlation technique for characterizations of retained austenite stability in low-alloyed transformation induced plasticity steel. Scripta Mater 63:1149–1152CrossRefGoogle Scholar - 20.Becker T, Splitthof K, Siebert T, Kletting P (2006) Error estimations of 3D digital image correlation measurements. Proc SPIE 6341:63410FCrossRefGoogle Scholar
- 21.Boyce BL, Grazier JM, Jones RE, Nguyen TD (2008) Full-field deformation of bovine cornea under constrained inflation conditions. Biomaterials 29:3896–3904CrossRefGoogle Scholar
- 22.Meunier L, Chagnon G, Favier D, Orgéas L, Vacher P (2008) Mechanical experimental characterization and numerical modelling of an unfilled silicone rubber. Polym Test 27:765–777CrossRefGoogle Scholar
- 23.Machado G, Favier D, Chagnon G (2011) Membrane curvatures and stress–strain full fields of axisymmetric bulge tests from 3D-DIC measurements. Theory and validation on virtual and experimental results. Exp Mech 52:865–880Google Scholar