Experimental Mechanics

, Volume 53, Issue 5, pp 783–794 | Cite as

MEMS-based Universal Fatigue-Test Technique

  • L. A. LiewEmail author
  • D. T. Read
  • N. BarbosaIII


We have developed a MEMS (micro electro mechanical systems)—based method for fatigue testing of micrometer— millimeter-sized specimens of any material (hence ‘universal’). The miniature, re-usable, stand-alone fatigue test frame is fabricated as a single MEMS chip. Specimens of any material can be manually mounted in the chip and fatigue-tested. We describe the design and construction of the MEMS device and specimens, the test protocol and data analysis procedure, and show stress versus number of cycles to failure (S-N) results for 25 μm thick Al 1145 H19 foil. The S-N results are in accord with expectations, and examination of the fracture surface by scanning electron microscopy shows distinct regions corresponding to slow and fast crack growth.


Fatigue Crack Micro-electro-mechanical systems Comb drive actuator Materials reliability 



The authors thank Yunda Wang, from the Department of Mechanical Engineering, University of Colorado, Boulder, for helpful discussions on MEMS capacitive sensing circuitry.

Supplementary material

Video 1

MEMS fatigue test instrument applying loads to a Al 1145 H19 specimen. (MPG 24058 kb)

Video 2

time-lapse movie consisting of optical micrographs of a Al 1145 H19 specimen’s gage section, showing fatigue crack initiation, slow crack growth, and rapid crack growth (failure) over 7x107 cycles. (MPG 1414 kb)


  1. 1.
    Forrest PG (1962) Fatigue of Metals. Pergamon Press, OxfordGoogle Scholar
  2. 2.
    Connolley T, McHugh PE, Bruzzi M (2005) A review of deformation and fatigue of metals at small size scales. Fatig Fract Eng Mater Struct 28:1119–1152CrossRefGoogle Scholar
  3. 3.
    Nogami S, Itoh T, Sakasegawa H, Tanigawa H, Wakai E, Nishimura A, Hasegawa A (2011) Study on fatigue life evaluation using small specimens for testing neutron-irradiated materials. J Nucl Sci Technol 48:60–64CrossRefGoogle Scholar
  4. 4.
    Zhang GP, Volkert CA, Schwaiger R, Monig R, Kraft O (2007) Fatigue and thermal fatigue damage analysis of thin metal films. Microelectron Reliab 47:2007–2013CrossRefGoogle Scholar
  5. 5.
    Zhang GP, Takashima K, Higo Y (2006) Fatigue strength of small-scale type 304 stainless steel thin films. Mater Sci Eng, A 426:95–100CrossRefGoogle Scholar
  6. 6.
    Hadrboletz A, Weiss B, Khatibi G (2001) Fatigue and fracture properties of thin metallic foils. Int J Fract 109:69–89CrossRefGoogle Scholar
  7. 7.
    Corwin WR, Haggag FM, Server WL (eds) (1994) Small Specimen Test Techniques Applied to Nuclear Reactor Vessel Thermal Annealing and Plant Life Extension (STP 1204). ASTM International, ConshohockenGoogle Scholar
  8. 8.
    Jung P, Hishinuma A, Lucas GE, Ullmaier H (1996) Recommendation of miniaturized techniques for mechanical testing of fusion materials in an intense neutron source. J Nucl Mater 232:186–205CrossRefGoogle Scholar
  9. 9.
    Lucas GE, Odette GR, Matsui H, Moslang A, Spatig P, Rensman J, Yamamoto T (2007) The role of small specimen test technology in fusion materials development. J Nucl Mater 367:1549–1556CrossRefGoogle Scholar
  10. 10.
    Lucas GE (1990) Review of small specimen test techniques for irradiation testing. Metall Trans A Phys Metall Mater Sci 21:1105–1119Google Scholar
  11. 11.
    Yang Y, Imasogie BI, Allameh SM, Boyce B, Lian K, Lou J, Soboyejo WO (2007) Mechanisms of fatigue in LIGA Ni MEMS thin films. Mater Sci Eng A Struct Mater Prop Microstruct Process 444:39–50CrossRefGoogle Scholar
  12. 12.
    Read DT (1998) Tension-tension fatigue of copper thin films. Int J Fatigue 20:203–209CrossRefGoogle Scholar
  13. 13.
    Allameh SM (2003) An introduction to mechanical-properties-related issues in MEMS structures. J Mater Sci 38:4115–4123CrossRefGoogle Scholar
  14. 14.
    Connally JA, Brown SB (1993) Micromechanical fatigue testing. Exp Mech 33:81–90CrossRefGoogle Scholar
  15. 15.
    Muhlstein CL, Howe RT, Ritchie RO (2004) Fatigue of polycrystalline silicon for microelectromechanical system applications: crack growth and stability under resonant loading conditions. Mech Mater 36:13–33CrossRefGoogle Scholar
  16. 16.
    De Pasquale G, Soma A (2011) MEMS mechanical fatigue: effect of mean stress on gold microbeams. J Microelectromech Syst 20:1054–1063CrossRefGoogle Scholar
  17. 17.
    de Boer MP, Corwin AD, Kotula PG, Baker MS, Michael JR, Subhash G, Shaw MJ (2008) On-chip laboratory suite for testing of free-standing metal film mechanical properties, Part II—Experiments. Acta Mater 56:3313–3326CrossRefGoogle Scholar
  18. 18.
    Larsen KP, Rasmussen AA, Ravnkilde JT, Ginnerup M, Hansen O (2003) MEMS device for bending test: measurements of fatigue and creep of electroplated nickel. Sensors Actuators A Phys 103:156–164CrossRefGoogle Scholar
  19. 19.
    Haque MA, Saif MTA (2001) Microscale materials testing using MEMS actuators. J Microelectromech Syst 10:146–152CrossRefGoogle Scholar
  20. 20.
    Brown JJ, Suk JW, Singh G, Baca AI, Dikin DA, Ruoff RS, Bright VM (2009) Microsystem for nanofiber electromechanical measurements. Sensors Actuators A Phys 155:1–7CrossRefGoogle Scholar
  21. 21.
    Pant B, Allen BL, Zhu T, Gall K, Pierron ON (2011) A versatile microelectromechanical system for nanomechanical testing. Appl Phys Lett 98:053506CrossRefGoogle Scholar
  22. 22.
    Hazra SS, Baker MS, Beuth JL, de Boer MP (2011) Compact on-chip microtensile tester with prehensile grip mechanism. J Microelectromech Syst 20:1043–1053CrossRefGoogle Scholar
  23. 23.
    Boyce BL, Michael JR, Kotula PG (2004) Fatigue of metallic microdevices and the role of fatigue-induced surface oxides. Acta Mater 52:1609–1619CrossRefGoogle Scholar
  24. 24.
    HE Boyer, TL Gall and American Society for Metals, Metals handbook, Desk ed., Metals Park, Ohio American Society for Metals, 1984Google Scholar
  25. 25.
    Tang WC, Nguyen TCH, Judy MW, Howe RT (1990) Electrostatic-comb drive of lateral polysilicon resonators. Sensors Actuators A Phys 21:328–331CrossRefGoogle Scholar
  26. 26.
    Senturia S (2000) Microsystem Design. Springer, New YorkGoogle Scholar
  27. 27.
    Langfelder G, Longoni A, Zaraga F, Corigliano A, Ghisi A, Merassi A (2009) A new on-chip test structure for real time fatigue analysis in polysilicon MEMS. Microelectron Reliab 49:120–126CrossRefGoogle Scholar
  28. 28.
    Noworolski JM, Klaassen E, Logan J, Petersen K, Maluf NI (1996) Fabrication of SOI wafers with buried cavities using silicon fusion bonding and electrochemical etchback. Sensors Actuators A Phys 54:709–713CrossRefGoogle Scholar
  29. 29.
    Franssila S, Kiihamaki J, Karttunen J (2000) Etching through silicon wafer in inductively coupled plasma. Microsyst Technol 6:141–144CrossRefGoogle Scholar
  30. 30.
    Legtenberg R, Groeneveld AW, Elwenspoek M (1996) Comb-drive actuators for large displacements. J Micromech Microeng 6:320–329CrossRefGoogle Scholar
  31. 31.
    Langfelder G, Longoni A, Zaraga F (2008) Low-noise real-time measurement of the position of movable structures in MEMS. Sensors Actuators A Phys 148:401–406CrossRefGoogle Scholar
  32. 32.
    Cheng YW, Read DT, McColskey JD, Wright JE (2005) A tensile-testing technique for micrometer-sized free-standing thin films. Thin Solid Films 484:426–432CrossRefGoogle Scholar
  33. 33.
    JE Hatch (1984) Aluminum Association and American Society for Metals, Aluminum: properties and physical metallurgy, Metals Park, Ohio American Society for MetalsGoogle Scholar
  34. 34.
    JG Kaufman (2008) Properties of aluminum alloys : fatigue data and the effects of temperature, product form, and processing, Materials Park, OH ASM InternationalGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2012

Authors and Affiliations

  1. 1.Materials Reliability DivisionNational Institute of Standards and TechnologyBoulderUSA
  2. 2.Department of Mechanical EngineeringUniversity of Colorado at BoulderBoulderUSA

Personalised recommendations