Experimental Mechanics

, Volume 53, Issue 4, pp 543–556 | Cite as

3D Digital Volume Correlation of Synchrotron Radiation Laminography Images of Ductile Crack Initiation: An Initial Feasibility Study

  • T. F. Morgeneyer
  • L. Helfen
  • H. Mubarak
  • F. Hild


A feasibility study of measuring 3D displacement fields in the bulk during ductile crack initiation via combined Synchrotron Radiation Computed Laminography (SRCL) and Digital Volume Correlation (DVC) is performed. In contrast to tomography, SRCL is a technique that is particularly adapted to obtain three-dimensional (3D) reconstructed volumes of objects that are laterally extended (i.e., in 2 directions) and thin in the third direction, i.e. sheet-like objects. In-situ laminography data of an initiating crack ahead of a machined notch are used with a voxel size of 0.7 μm. The natural contrast of the observed 2XXX Al-alloy caused by intermetallic particles and initial porosity is used to measure displacement fields via a global DVC technique assuming a continuous displacement field. An initial performance study is carried out on data of the same undeformed material but after a substantial shift of the laminography rotation axis with respect to the imaged specimen. Volume correlations between different loading steps provide displacement fields that are qualitatively consistent with the remote loading conditions. Computed strain fields display a strain concentration close to the notch tip.


Aluminium alloy Digital Volume Correlation Ductile fracture Displacement field Resolution Strain field Synchrotron Radiation Laminography 



The authors would like to acknowledge Ian Sinclair and Mark Mavrogordato from the University of Southampton for participating in/helping with the laminography experiment. Feng Xu is thanked for help with reconstruction of the data. Thibault Taillandier-Thomas is also thanked for running some resolution assessments.


  1. 1.
    Zerbst U, Heinimann M, Dalle Donne C, Steglich D (2009) Fracture and damage mechanics modelling of thin-walled structures. An overview. Eng Fract Mech 76:5–43CrossRefGoogle Scholar
  2. 2.
    Chen J, Madi Y, Morgeneyer TF, Besson J (2011) Plastic flow and ductile rupture of a 2198 Al-Cu-Li aluminium alloy. Comp Mat Sci 50:1365–1371CrossRefGoogle Scholar
  3. 3.
    Le Jolu T, Morgeneyer TF, Gourgues-Lorenzon A-F (2010) Effect of joint line remnant on fatigue lifetime of friction stir welded Al-Cu-Li alloy. Sci Tech Weld Join 15:694–698CrossRefGoogle Scholar
  4. 4.
    Mahgoub E, Deng X, Sutton MA (2003) Three dimensional stress and deformation fields around flat and slant cracks under remote mode I loading conditions. Eng Fract Mech 70:2527–2542CrossRefGoogle Scholar
  5. 5.
    Lorthios J, Nguyen F, Gourgues-Lorenzon A-F, Morgeneyer TF, Cugy P (2010) Damage observation in a high manganese austenitic Twinning Induced Plasticity (TWIP) steel by synchrotron radiation computed tomography. Scr Mat 63:1220–1223CrossRefGoogle Scholar
  6. 6.
    Morgeneyer TF, Besson J (2011) Flat to slant ductile fracture transition: tomography examination and simulations using shear controlled void nucleation. Scr Mat 65:1002–1005CrossRefGoogle Scholar
  7. 7.
    Maire E, Zhou S, Adrien J, Dimichiel M (2011) Damage quantification in aluminium alloys using in situ tensile tests in X-ray tomography. Eng Fract Mech 78:2679–2690CrossRefGoogle Scholar
  8. 8.
    Landron C, Bouaziz O, Maire E, Adrien J (2010) Characterization and modeling of void nucleation by interface decohesion in dual phase steels. Scr Mat 63:973–976CrossRefGoogle Scholar
  9. 9.
    Maire E, Morgeneyer TF, Landron C, Adrien J, Helfen L (2012) Bulk evaluation of ductile damage development using high resolution tomography and laminography. C R Phys 13:328–336CrossRefGoogle Scholar
  10. 10.
    Helfen L, Myagotin A, Mikulík P, Pernot P, Voropaev A, Elyyan M, Di Michiel M, Baruchel J, Baumbach T (2011) On the implementation of computed laminography using synchrotron radiation. Rev Sci Instrum 82Google Scholar
  11. 11.
    Helfen L, Morgeneyer TF, Xu F, Mavrogordato MN, Sinclair I, Schillinger B, Baumbach T (2012) Synchrotron and neutron laminography for three-dimensional imaging of devices and flat material specimens. Int J Mater Res 2012:170–173CrossRefGoogle Scholar
  12. 12.
    Maurel V, Helfen L, N’Guyen F, Köster A, Di Michiel M, Baumbach T, Morgeneyer TF (2012) Three-dimensional investigation of thermal barrier coatings by synchrotron-radiation computed laminography. Scr Mat 66:471–474CrossRefGoogle Scholar
  13. 13.
    Moffat AJ, Wright P, Helfen L, Baumbach T, Johnson G, Spearing SM, Sinclair I (2010) In situ synchrotron computed laminography of damage in carbon fibre-epoxy [90/0]s laminates. Scr Mat 62:97–100CrossRefGoogle Scholar
  14. 14.
    Morgeneyer TF, Helfen L, Sinclair I, Proudhon H, Xu F, Baumbach T (2011) Ductile crack initiation and propagation assessed via in situ synchrotron radiation computed laminography. Scr Mat 65:1010–1013CrossRefGoogle Scholar
  15. 15.
    Sutton MA, Orteu J-J, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts. Theory and Applications, SpringerGoogle Scholar
  16. 16.
    Bay BK, Smith TS, Fyhrie DP, Saad M (1999) Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp Mech 39:217–226CrossRefGoogle Scholar
  17. 17.
    Smith TS, Bay BK, Rashid MM (2002) Digital volume correlation including rotational degrees of freedom during minimization. Exp Mech 42:272–278CrossRefGoogle Scholar
  18. 18.
    Bornert M, Chaix J-M, Doumalin P, Dupré J-C, Fournel T, Jeulin D, Maire E, Moreaud M, Moulinec H (2004) Mesure tridimensionnelle de champs cinématiques par imagerie volumique pour l′analyse des matériaux et des structures. Inst Mes Métrol 4:43–88Google Scholar
  19. 19.
    Verhulp E, van Rietbergen B, Huiskes R (2004) A three-dimensional digital image correlation technique for strain measurements in microstructures. J Biomech 37:1313–1320CrossRefGoogle Scholar
  20. 20.
    Liu L, Morgan E (2007) Accuracy and precision of digital volume correlation in quantifying displacements and strains in trabecular bone. J Biomech 40:3516–3520CrossRefGoogle Scholar
  21. 21.
    Forsberg F, Mooser R, Arnold M, Hack E, Wyss P (2008) 3D Micro-scale deformations of wood in bending: synchrotron radiation μCT data analyzed with digital volume correlation. J Struct Biol 164:255–262CrossRefGoogle Scholar
  22. 22.
    Nielsen SF, Poulsen HF, Beckmann F, Thorning C, Wert JA (2003) Measurements of plastic displacement gradient components in three dimensions using marker particles and synchrotron X-ray absorption microtomography. Acta Mater 51:2407–2415CrossRefGoogle Scholar
  23. 23.
    Limodin N, Réthoré J, Buffière J-Y, Gravouil A, Hild F, Roux S (2009) Crack closure and stress intensity factor measurements in nodular graphite cast iron using 3D correlation of laboratory X ray microtomography images. Acta Mater 57:4090–4101CrossRefGoogle Scholar
  24. 24.
    Roux S, Hild F, Viot P, Bernard D (2008) Three dimensional image correlation from X-Ray computed tomography of solid foam. Comp Part A 39:1253–1265CrossRefGoogle Scholar
  25. 25.
    Réthoré J, Tinnes J-P, Roux S, Buffière J-Y, Hild F (2008) Extended three-dimensional digital image correlation (X3D-DIC). C R Mecanique 336:643–649zbMATHCrossRefGoogle Scholar
  26. 26.
    Rannou J, Limodin N, Réthoré J, Gravouil A, Ludwig W, Baïetto M-C, Buffière J-Y, Combescure A, Hild F, Roux S (2010) Three dimensional experimental and numerical multiscale analysis of a fatigue crack. Comput Meth Appl Mech Eng 199:1307–1325zbMATHCrossRefGoogle Scholar
  27. 27.
    Limodin N, Réthoré J, Buffière J-Y, Hild F, Roux S, Ludwig W, Rannou J, Gravouil A (2010) Influence of closure on the 3D propagation of fatigue cracks in a nodular cast iron investigated by X-ray tomography and 3D volume correlation. Acta Mater 58:2957–2967CrossRefGoogle Scholar
  28. 28.
    Morgeneyer TF, Besson J, Proudhon H, Starink MJ, Sinclair I (2009) Experimental and numerical analysis of toughness anisotropy in AA2139 Al-alloy sheet. Acta Mater 57:3902–3915CrossRefGoogle Scholar
  29. 29.
    Helfen L, Baumbach T, Mikulík P, Kiel D, Pernot P, Cloetens P, Baruchel J (2005) High-resolution three-dimensional imaging of flat objects by synchrotron-radiation computed laminography. Appl Phys Lett 86Google Scholar
  30. 30.
    Helfen L, Myagotin A, Rack A, Pernot P, Mikulík P, Di Michiel M, Baumbach T (2007) Synchrotron-radiation computed laminography for high-resolution three-dimensional imaging of flat devices. Phys Stat Sol (a) 204:2760–2765CrossRefGoogle Scholar
  31. 31.
    Xu F, Helfen L, Baumbach T, Suhonen H (2012) Comparison of image quality in computed laminography and tomography. Opt Express 20:794–806CrossRefGoogle Scholar
  32. 32.
    Helfen L, Baumbach T, Cloetens P, Baruchel J (2009) Phase contrast and holographic computed laminography. Appl Phys Lett 94Google Scholar
  33. 33.
    Xu F, Helfen L, Moffat AJ, Johnson G, Sinclair I, Baumbach T (2010) Synchrotron radiation computed laminography for polymer composite failure studies. J Synchron Radiat 17:222–226CrossRefGoogle Scholar
  34. 34.
    Harasse S, Hirayama N, Yashiro W, Momose A (2010) X-ray phase laminography with Talbot interferometer. Proc SPIE 7804Google Scholar
  35. 35.
    Altapova V, Helfen L, Myagotin A, Hänschke D, Moosmann J, Gunneweg J, Baumbach T (2012) Phase contrast laminography based on Talbot interferometry. Opt Express 20:6496–6508CrossRefGoogle Scholar
  36. 36.
    Krug K, Porra L, Coan P, Wallert A, Dik J, Coerdt A, Bravin A, Elyyan M, Reischig P, Helfen L, Baumbach T (2008) Relics in medieval altarpieces? Combining X ray tomographic, laminographic and phase contrast imaging to visualize thin organic objects. J Synchron Radiat 15:55–61CrossRefGoogle Scholar
  37. 37.
    Weitkamp T, Tafforeau P, Boller E, Cloetens P, Valade J-P, Bernard P, Peyrin F, Ludwig W, Helfen L, Baruchel J (2010) Status and evolution of the ESRF beamline ID19. In. ICXOM 2009, AIP Conf. ProcGoogle Scholar
  38. 38.
    Rack A, Weitkamp T, Riotte M, Grigoriev D, Rack T, Helfen L, Baumbach T, Dietsch R, Holz T, Krämer M, Siewert F, Meduna M, Cloetens P, Ziegler E (2010) Comparative study of multilayers used in monochromators for synchrotron-based coherent hard X-ray imaging. J Synchron Radiat 17:496–510CrossRefGoogle Scholar
  39. 39.
    Sijbers J, Postnovz A (2004) Reduction of ring artefacts in high resolution micro-CT reconstructions. Phys Med Biol 49:247–253CrossRefGoogle Scholar
  40. 40.
    Cloetens P, Pateyron-Salomé M, Buffière J-Y, Peix G, Baruchel J, Peyrin F, Schlenker M (1997) Observation of microstructure and damage in materials by phase sensitive radiography and tomography. J Appl Phys 81Google Scholar
  41. 41.
    Zienkievicz OC, Taylor RL (1989) The Finite Element Method. McGraw-HillGoogle Scholar
  42. 42.
    99-12:2007 IIg. International Vocabulary of Metrology—Basic and General Concepts and Associated Terms, VIM. International Organization for Standardization; 2007Google Scholar
  43. 43.
    Hild F, Maire E, Roux S, Witz J-F (2009) Three dimensional analysis of a compression test on stone wool. Acta Mater 57:3310–3320CrossRefGoogle Scholar
  44. 44.
    Limodin N, Réthoré J, Adrien J, Buffière J-Y, Hild F, Roux S (2011) Analysis and artifact correction for volume correlation measurements using tomographic images from a laboratory X-ray source. Exp Mech 51:959–970CrossRefGoogle Scholar
  45. 45.
    Leclerc H, Périé J-N, Hild F, Roux S (2012) Digital volume correlation: what are the limits to the spatial resolution? Méc & Indust., submittedGoogle Scholar
  46. 46.
    Hild F, Roux S (2012) Comparison of local and global approaches to digital image correlation. Exp Mech doi: 10.1007/s11340-012-9603-7

Copyright information

© Society for Experimental Mechanics 2012

Authors and Affiliations

  • T. F. Morgeneyer
    • 1
  • L. Helfen
    • 2
    • 3
  • H. Mubarak
    • 1
  • F. Hild
    • 4
  1. 1.Mines ParisTech, Centre des Matériaux, CNRS UMR 7633Evry CedexFrance
  2. 2.ANKA/Institute for Synchrotron Radiation, Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  3. 3.European Synchrotron Radiation Facility (ESRF)Grenoble cedexFrance
  4. 4.LMT-Cachan, ENS Cachan/CNRS/UPMC/PRES UniverSud ParisCachan CedexFrance

Personalised recommendations