Experimental Mechanics

, Volume 53, Issue 3, pp 427–439 | Cite as

Investigation of Strain Heterogeneities Between Grains in Ferritic and Ferritic-Martensitic Steels



This work uses microlithography, digital image correlation and tensile test in order to investigate the reasons behind the heterogeneous strain distribution at the grain scale. Scanning Electron Microscope images are taken to examine the relationship between microstructure features and strain heterogeneity. The study is carried out on single phase ferritic steel and two dual phase steels with ferrite and different hard particle martensite contents. Useful image correlation is obtained in grains with diameters of 2–3 μm for the martensite and ranging from 10 to 20 μm for the ferrite. To prevent a decrease of image correlation success, some technical aspects as the microgrid step and bar width are extensively tackled with for intermediate deformations (>10 %). The different levels of longitudinal intragranular strains observed inside the ferrite grains are not correlated with their orientation, shape, size or the presence (and content) of hard phase in the material.


Full field strain measurements In situ tensile test Dual phase steels Microlithography Strain heterogeneity 



The authors are grateful to R. Chiron for his help in SEM analysis as well as to Dr. P.E. Mazeran for his contribution in nanoindentation tests. The authors would also like to thank H.-S. Tran for his valuable help in microlithography.


  1. 1.
    Letouzé N, Brenner R, Castelnau O, Béchade JL, Mathon MH (2002) Residual strain distribution in Zircaloy-4 measured by neutron diffraction and estimated by homogenization techniques. Scripta Mater 47(9):595–599. doi: 10.1016/s1359-6462(02)00199-9 CrossRefGoogle Scholar
  2. 2.
    Martins RV, Margulies L, Schmidt S, Poulsen HF, Leffers T (2004) Simultaneous measurement of the strain tensor of 10 individual grains embedded in an Al tensile sample. Mater Sci Eng A 387–389:84–88. doi: 10.1016/j.msea.2004.02.069 Google Scholar
  3. 3.
    Neil CJ, Wollmershauser JA, Clausen B, Tomé CN, Agnew SR (2010) Modeling lattice strain evolution at finite strains and experimental verification for copper and stainless steel using in situ neutron diffraction. Int J Plast 26(12):1772–1791. doi: 10.1016/j.ijplas.2010.03.005 MATHCrossRefGoogle Scholar
  4. 4.
    Clausen B, Lorentzen T, Bourke MAM, Daymond MR (1999) Lattice strain evolution during uniaxial tensile loading of stainless steel. Mater Sci Eng A 259(1):17–24. doi: 10.1016/s0921-5093(98)00878-8 CrossRefGoogle Scholar
  5. 5.
    Daymond MR, Tomé CN, Bourke MAM (2000) Measured and predicted intergranular strains in textured austenitic steel. Acta Mater 48(2):553–564. doi: 10.1016/s1359-6454(99)00354-7 CrossRefGoogle Scholar
  6. 6.
    Jia N, Lin Peng R, Wang YD, Johansson S, Liaw PK (2008) Micromechanical behavior and texture evolution of duplex stainless steel studied by neutron diffraction and self-consistent modeling. Acta Mater 56(4):782–793. doi: 10.1016/j.actamat.2007.10.040 CrossRefGoogle Scholar
  7. 7.
    Nicoletto G (2002) On the visualization of heterogeneous plastic strains by Moiré interferometry. Opt Lasers Eng 37(4):433–442. doi: 10.1016/s0143-8166(01)00106-3 CrossRefGoogle Scholar
  8. 8.
    Lagattu F, Bridier F, Villechaise P, Brillaud J (2006) In-plane strain measurements on a microscopic scale by coupling digital image correlation and an in situ SEM technique. Mater Charact 56(1):10–18. doi: 10.1016/j.matchar.2005.08.004 CrossRefGoogle Scholar
  9. 9.
    Claire D, Hild F, Roux S (2004) A finite element formulation to identify damage fields: the equilibrium gap method. Int J Numer Methods Eng 61(2):189–208. doi: 10.1002/nme.1057 MATHCrossRefGoogle Scholar
  10. 10.
    Attwood DG, Hazzledine PM (1976) A fiducial microgrid for high-resolution metallography. Metallography 9(6):483–501CrossRefGoogle Scholar
  11. 11.
    Soppa E, Doumalin P, Binkele P, Wiesendanger T, Bornert M, Schmauder S (2001) Experimental and numerical characterisation of in-plane deformation in two-phase materials. Comput Mater Sci 21(3):261–275. doi: 10.1016/s0927-0256(01)00170-7 CrossRefGoogle Scholar
  12. 12.
    Doumalin P, Bornert M, Crépin J (2003) Caractérisation de la répartition de la déformation dans les matériaux hétérogènes. Mec Ind 4(6):607–617. doi: 10.1016/j.mecind.2003.09.002 Google Scholar
  13. 13.
    Hoc T, Crépin J, Gélébart L, Zaoui A (2003) A procedure for identifying the plastic behavior of single crystals from the local response of polycrystals. Acta Mater 51(18):5477–5488. doi: 10.1016/s1359-6454(03)00413-0 CrossRefGoogle Scholar
  14. 14.
    Hernandez-Castillo L, Rupin N, Boldetti C, Pinna C, Bornert M (2006) Evaluation of local strain fields in hot worked stainless steel. In: Photomechanics, Clermont-Ferrand, FranceGoogle Scholar
  15. 15.
    Heripre E, Dexet M, Crepin J, Gelebart L, Roos A, Bornert M, Caldemaison D (2007) Coupling between experimental measurements and polycrystal finite element calculations for micromechanical study of metallic materials. Int J Plast 23(9):1512–1539. doi: 10.1016/j.ijplas.2007.01.009 MATHCrossRefGoogle Scholar
  16. 16.
    Bugat S, Besson J, Gourgues AF, N’Guyen F, Pineau A (2001) Microstructure and damage initiation in duplex stainless steels. Mater Sci Eng A-Struct Mater Prop Microstruct Process 317(1–2):32–36. doi: 10.1016/s0921-5093(01)01196-0 CrossRefGoogle Scholar
  17. 17.
    Kang J, Jain M, Wilkinson DS, Embury JD (2005) Microscopic strain mapping using scanning electron microscopy topography image correlation at large strain. J Strain Anal Eng Des 40(6):559–570CrossRefGoogle Scholar
  18. 18.
    Fazzini M, Mistou S, Dalverny O, Robert L (2010) Study of image characteristics on digital image correlation error assessment. Opt Lasers Eng 48(3):335–339. doi: 10.1016/j.optlaseng.2009.10.012 CrossRefGoogle Scholar
  19. 19.
    Dexet M, J. C, Sauzay M (2004) Identification de loi de comportement cristallines à partir du couplage EBSD/Microextensométrie/Eléments Finis. Application au zirconium grade 702. In: MECAMAT, Aussois, France, 2004Google Scholar
  20. 20.
    Kang J, Ososkov Y, Embury JD, Wilkinson DS (2007) Digital image correlation studies for microscopic strain distribution and damage in dual phase steels. Scripta Mater 56(11):999–1002. doi: 10.1016/j.scriptamat.2007.01.031 CrossRefGoogle Scholar
  21. 21.
    Al-Abbasi FM, Nemes JA (2003) Micromechanical modeling of dual phase steels. Int J Mech Sci 45(9):1449–1465. doi: 10.1016/j.ijmecsci.2003.10.007 MATHCrossRefGoogle Scholar
  22. 22.
    Delincé M, Bréchet Y, Embury JD, Geers MGD, Jacques PJ, Pardoen T (2007) Structure–property optimization of ultrafine-grained dual-phase steels using a microstructure-based strain hardening model. Acta Mater 55(7):2337–2350. doi: 10.1016/j.actamat.2006.11.029 CrossRefGoogle Scholar
  23. 23.
    St-Pierre L, Héripré E, Dexet M, Crépin J, Bertolino G, Bilger N (2008) 3D simulations of microstructure and comparison with experimental microstructure coming from O.I.M analysis. Int J Plast 24(9):1516–1532. doi: 10.1016/j.ijplas.2007.10.004 MATHCrossRefGoogle Scholar
  24. 24.
    Nesterova EV, Bacroix B, Teodosiu C (2001) Experimental observation of microstructure evolution under strain-path changes in low-carbon IF steel. Mater Sci Eng A-Struct Mater Prop Microstruct Process 309:495–499. doi: 10.1016/s0921-5093(00)01639-7 CrossRefGoogle Scholar
  25. 25.
    Bouvier S, Gardey B, Chauveau T, Bacroix B (2005) The effect of strain path change on texture evolution at finite strain of multiphase steel: numerical and experimental investigations. Mater Sci Forum 495–497:1097–1102CrossRefGoogle Scholar
  26. 26.
    Gardey B, Bouvier S, Richard V, Bacroix BB (2005) Texture and dislocation structures observation in a dual-phase steel under strain-path changes at large deformation. Mater Sci Eng A-Struct Mater Prop Microstruct Process 400:136–141. doi: 10.1016/j.msea.2005.01.066 CrossRefGoogle Scholar
  27. 27.
    Gardey B (2005) Caractérisation multiéchelle du comportement plastique en grandes déformations à froid d’aciers à très haute limite d’élasticité dual pahse et TRIP. Université Paris XIII, VilletaneuseGoogle Scholar
  28. 28.
    Gardey B, Bouvier S, Bacroix B (2005) Correlation between the macroscopic behavior and the microstructural evolutions during large plastic deformation of a dual-phase steel. Metall Mater Trans A Phys Metall Mater Sci 36A(11):2937–2945. doi: 10.1007/s11661-005-0067-6 CrossRefGoogle Scholar
  29. 29.
    Chiron R, Fryet J, Viaris de Lesegno P (1995) In-situ tensile machine. France Patent,Google Scholar
  30. 30.
    Chiron R, Fryet J, Viaris de Lesegno P (1996) Device for SEM and EBSP in-situ tensile tests up to 800 ◦C. Proceedings of Local Strain and Temperature Measurements in non-uniform fields at Elevated Temperature, Woodhead Publishing Limited edn., Cambridge, UKGoogle Scholar
  31. 31.
    Li X, Bhushan B (2002) A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Charact 48(1):11–36. doi: 10.1016/s1044-5803(02)00192-4 CrossRefGoogle Scholar
  32. 32.
    Allais L, Bornert M, Bretheau T, Caldemaison D (1994) Experimental characterization of the local strain field in a heterogeneous elastoplastic material. Acta Metall Mater 42(11):3865–3880. doi: 10.1016/0956-7151(94)90452-9 CrossRefGoogle Scholar
  33. 33.
    Haddadi H, Belhabib S (2008) Use of rigid-body motion for the investigation and estimation of the measurement errors related to digital image correlation technique. Opt Lasers Eng 46(2):185–196. doi: 10.1016/j.optlaseng.2007.05.008 CrossRefGoogle Scholar
  34. 34.
    Gom (2008) Aramis ® v6.1: User manualGoogle Scholar
  35. 35.
    Dournaux JL, Bouvier S, Aouafi A, Vacher P (2009) Full-field measurement technique and its application to the analysis of materials behaviour under plane strain mode. Mater Sci Eng A 500(1–2):47–62. doi: 10.1016/j.msea.2008.09.052 Google Scholar
  36. 36.
    Tasan CC, Hoefnagels JPM, Geers MGD (2010) Microstructural banding effects clarified through micrographic digital image correlation. Scripta Mater 62(11):835–838. doi: 10.1016/j.scriptamat.2010.02.014 CrossRefGoogle Scholar
  37. 37.
    Shen HP, Lei TC, Liu JZ (1986) Microscopic deformation behaviour of martensitic ferritic dual-phase steels. Mater Sci Technol 2(1):28–33CrossRefGoogle Scholar
  38. 38.
    Rashid MS, Cprek ER (1978) Relationship between microstructure and formability in two high-strength low-alloy steels. Formability topics—metallic materials.. doi: 10.1520/STP30052S
  39. 39.
    Bergström Y, Granbom Y, Sterkenburg D (2010) A dislocation-based theory for the deformation hardening behavior of DP steels: impact of martensite content and ferrite grain size. J Metall 2010:1–16. doi: 10.1155/2010/647198 CrossRefGoogle Scholar
  40. 40.
    Korzekwa DA, Matlock DK, Krauss G (1984) Dislocation substructure as a function of strain in a dual phase steel. Metall Trans A 15(6):1221–1228. doi: 10.1007/BF02644716 CrossRefGoogle Scholar
  41. 41.
    Delincé M, Jacques PJ, Pardoen T (2006) Separation of size-dependent strengthening contributions in fine-grained Dual Phase steels by nanoindentation. Acta Mater 54(12):3395–3404. doi: 10.1016/j.actamat.2006.03.031 CrossRefGoogle Scholar
  42. 42.
    Yoshida K, Brenner R, Bacroix B, Bouvier S (2011) Micromechanical modeling of the work-hardening behavior of single- and dual-phase steels under two-stage loading paths. Mater Sci Eng A-Struct Mater Prop Microstruct Process 528(3):1037–1046. doi: 10.1016/j.msea.2010.10.078 CrossRefGoogle Scholar
  43. 43.
    Badulescu C, Grediac M, Haddadi H, Mathias JD, Balandraud X, Tran HS (2011) Applying the grid method and infrared thermography to investigate plastic deformation in aluminium multicrystal. Mech Mater 43(1):36–53. doi: 10.1016/j.mechmat.2010.11.001 CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2012

Authors and Affiliations

  1. 1.LSPM-CNRS, UPR3407VilletaneuseFrance
  2. 2.Laboratoire RobervalUniversité de Technologie de Compiègne, Centre de Recherches de RoyallieuCompiègne CedexFrance

Personalised recommendations