Experimental Mechanics

, Volume 54, Issue 2, pp 127–136 | Cite as

Interfacial Residual Stress Analysis of Thermal Spray Coatings by Miniature Ring-Core Cutting Combined with DIC Method

  • J. G. Zhu
  • H. M. Xie
  • Y. J. Li
  • Z. X. Hu
  • Q. Luo
  • C. Z. Gu


The residual stress in thermal barrier coatings (TBCs) fabricated from coating deposition plays a vital role in the coating design and processing parameters optimization. The main objective of the present work is to determine the interfacial residual stress in TBCs by means of miniature ring-core cutting and the digital image correlation (DIC) method. Both the ring-core cutting and the dot pattern used for DIC deformation measurement are implemented by the focused ion beam (FIB) milling on the cross-section of a coating. A finite element model (FEM) is developed to simulate the ring-core cutting process. From the FEM, the calibration coefficients are determined for general applications. The surface of the ring-core containing dot patterns is recorded before and after the FIB milling process. DIC technique is then performed to calculate the surface displacement caused by the release of residual stresses due to the cutting. Results demonstrate that the interfacial residual stress in TBCs is nearly in a uniaxial stress state and has a tendency to be compressive toward the interface. Finally, essential aspects of the technique are discussed.


Residual stress Thermal barrier coatings (TBCs) Focused ion beam (FIB) Digital image correlation (DIC) Ring-core cutting method 



The authors are grateful to the financial supported by the National Basic Research Program of China (“973” Project) (Grant No.2010CB631005, 2011CB606105), the National Natural Science Foundation of China (Grant Nos. 11172151, 90916010), Specialized Research Fund for the Doctoral Program of Higher Education (Grant No.20090002110048).


  1. 1.
    Evans AG, Mumm DR, Hutchinson JW, Meier GH, Pettit FS (2001) Mechanisms controlling the durability of thermal barrier coatings. Prog Mater Sci 46(5):505–553CrossRefGoogle Scholar
  2. 2.
    Johnston RE (2009) The sensitivity of abradable coating residual stresses to varying material properties. J Therm Spray Technol 18(5–6):1004–1013. doi: 10.1007/s11666-009-9378-2 CrossRefMathSciNetGoogle Scholar
  3. 3.
    Rabiei A, Evans AG (2000) Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings. Acta Mater 48(15):3963–3976CrossRefGoogle Scholar
  4. 4.
    Matejicek J, Sampath S, Dubsky J (1998) X-ray residual stress measurement in metallic and ceramic plasma sprayed coatings. J Therm Spray Technol 7(4):489–496CrossRefGoogle Scholar
  5. 5.
    Matejicek J, Sampath S (2001) Intrinsic residual stresses in single splats produced by thermal spray processes. Acta Mater 49(11):1993–1999CrossRefGoogle Scholar
  6. 6.
    Greving DJ, Rybicki EF, Shadley JR (1994) Through-thickness residual-stress evaluations for several industrial thermal spray coatings using a modified layer-removal method. J Therm Spray Technol 3(4):379–388CrossRefGoogle Scholar
  7. 7.
    Wenzelburger M, López D, Gadow R (2006) Methods and application of residual stress analysis on thermally sprayed coatings and layer composites. Surf CoatTechnol 201(5):1995–2001CrossRefGoogle Scholar
  8. 8.
    Liao H, Vaslin P, Yang Y, Coddet C (1997) Determination of residual stress distribution from in situ curvature measurements for thermally sprayed WC/Co coatings. J Therm Spray Technol 6(2):235–241CrossRefGoogle Scholar
  9. 9.
    Clyne T, Gill S (1996) Residual stresses in thermal spray coatings and their effect on interfacial adhesion: a review of recent work. J Therm Spray Technol 5(4):401–418. doi: 10.1007/bf02645271 CrossRefGoogle Scholar
  10. 10.
    Kesler O, Finot M, Suresh S, Sampath S (1997) Determination of processing-induced stresses and properties of layered and graded coatings: experimental method and results for plasma-sprayed Ni-Al2O3. Acta Mater 45(8):3123–3134CrossRefGoogle Scholar
  11. 11.
    Matejicek J, Sampath S (2003) In situ measurement of residual stresses and elastic moduli in thermal sprayed coatings—Part 1: apparatus and analysis. Acta Mater 51(3):863–872. doi: 10.1016/s1359-6454(02)00478-0 CrossRefGoogle Scholar
  12. 12.
    Zhu JG, Xie HM, Hu ZX, Chen PW, Zhang QM (2011) Residual stress in thermal spray coatings measured by curvature based on 3D digital image correlation technique. Surf CoatTechnol 206(6):1396–1402CrossRefGoogle Scholar
  13. 13.
    Khan AN, Lu J, Liao H (2003) Effect of residual stresses on air plasma sprayed thermal barrier coatings. Surf CoatTechnol 168(2–3):291–299CrossRefGoogle Scholar
  14. 14.
    Valente T, Bartuli C, Sebastiani M, Loreto A (2005) Implementation and development of the incremental hole drilling method for the measurement of residual stress in thermal spray coatings. J Therm Spray Technol 14(4):462–470. doi: 10.1361/105996305X76432 CrossRefGoogle Scholar
  15. 15.
    Santana YY, La Barbera-Sosa JG, Staia MH, Lesage J, Puchi-Cabrera ES, Chicot D, Bemporad E (2006) Measurement of residual stress in thermal spray coatings by the incremental hole drilling method. Surf CoatTechnol 201(5):2092–2098. doi: 10.1016/j.surfcoat.2006.04.056 CrossRefGoogle Scholar
  16. 16.
    Li KY, Ren W (2007) Application of miniature ring-core and interferometric strain/slope rosette to determine residual stress distribution with depth - part I: theories. J Appl Mech-Trans ASME 74(2):298–306. doi: 10.1115/1.2198251 CrossRefzbMATHGoogle Scholar
  17. 17.
    Wu Z, Lu JA, Han BT (1998) Study of residual stress distribution by a combined method of moire interferometry and incremental hole drilling, part I: theory. J Appl Mech-Trans ASME 65(4):837–843CrossRefGoogle Scholar
  18. 18.
    Steinzig M, Ponslet E (2003) Residual stress measurement using the hole drilling method and laser speckle interferometry: Part I. Exp Techniques 27(3):43–46CrossRefGoogle Scholar
  19. 19.
    Lord JD, Penn D, Whitehead P (2008) The application of digital image correlation for measuring residual stress by incremental hole drilling. Appl Mech Mater 13–14:65–73CrossRefGoogle Scholar
  20. 20.
    Pan B, Qian KM, Xie HM, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Tech 20(6):doi:10.1088/0957-0233/20/6/062001
  21. 21.
    Schajer G (2010) Relaxation methods for measuring residual stresses: techniques and opportunities. Exp Mech 50(8):1117–1127. doi: 10.1007/s11340-010-9386-7 CrossRefGoogle Scholar
  22. 22.
    McCarthy J, Pei Z, Becker M, Atteridge D (2000) FIB micromachined submicron thickness cantilevers for the study of thin film properties. Thin Solid Films 358(1–2):146–151CrossRefGoogle Scholar
  23. 23.
    Korsunsky AM, Sebastiani M, Bemporad E (2009) Focused ion beam ring drilling for residual stress evaluation. Mater Lett 63(22):1961–1963CrossRefGoogle Scholar
  24. 24.
    Winiarski B, Langford RM, Tian JW, Yokoyama Y, Liaw PK, Withers PJ (2010) Mapping residual stress distributions at the micron scale in amorphous materials. Metall Mater Trans A 41(7):1743–1751. doi: 10.1007/s11661-009-0127-4 CrossRefGoogle Scholar
  25. 25.
    McGinnis MJ, Pessiki S, Turker H (2005) Application of three-dimensional digital image correlation to the core-drilling method. Exp Mech 45(4):359–367. doi: 10.1177/0014485105055435 CrossRefGoogle Scholar
  26. 26.
    Pan B, Xie HM, Hua T, Asundi A (2009) Measurement of coefficient of thermal expansion of films using digital image correlation method. Polymer Test 28(1):75–83. doi: 10.1016/j.polymertesting.2008.11.004 CrossRefGoogle Scholar
  27. 27.
    Pan B, Xie HM, Guo ZQ, Hua T (2007) Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation. Opt Eng 46(3):doi:10.1117/1.2714926
  28. 28.
    Zhao X, Xiao P (2006) Residual stresses in thermal barrier coatings measured by photoluminescence piezospectroscopy and indentation technique. Surf CoatTechnol 201(3–4):1124–1131. doi: 10.1016/j.surfcoat.2006.01.035 CrossRefGoogle Scholar
  29. 29.
    Zhu JG, Xie HM, Hu ZX, Chen PW, Zhang QM (2012) Cross-sectional residual stresses in thermal spray coatings measured by moire’ interferometry and nanoindentation technique. J Therm Spray Technol. doi: 10.1007/s11666-012-9732-7
  30. 30.
    Montay G, Cherouat A, Lu J, Baradel N, Bianchi L (2002) Development of the high-precision incremental-step hole-drilling method for the study of residual stress in multi-layer materials: influence of temperature and substrate on ZrO2-Y2O3 8 wt.% coatings. Surf CoatTechnol 155(2-3):152–160CrossRefGoogle Scholar
  31. 31.
    Scardi P, Leoni M, Bertini L, Bertamini L, Cernuschi F (1998) Strain gradients in plasma-sprayed zirconia thermal barrier coatings. Surf CoatTechnol 108–109:93–98CrossRefGoogle Scholar
  32. 32.
    Wu Z, Lu JA, Han BT (1998) Study of residual stress distribution by a combined method of moire interferometry and incremental hole-drilling, part II: implementation. J Appl Mech-Trans ASME 65(4):844–850CrossRefGoogle Scholar
  33. 33.
    Ren W, Li KY (2007) Application of miniature ring-core and interferometric strain/slope rosette to determine residual stress distribution with depth—part II: experiments. J Appl Mech-Trans ASME 74(2):307–314. doi: 10.1115/1.2198252 CrossRefzbMATHGoogle Scholar
  34. 34.
    Padture NP, Gell M, Jordan EH (2002) Thermal barrier coatings for gas-turbine engine applications. Science 296(5566):280–284CrossRefGoogle Scholar
  35. 35.
    Schajer GS (2010) Advances in hole-drilling residual stress measurements. Exp Mech 50(2):159–168CrossRefGoogle Scholar
  36. 36.
    Tsui YC, Clyne TW (1997) An analytical model for predicting residual stresses in progressively deposited coatings Part 1: planar geometry. Thin Solid Films 306(1):23–33CrossRefGoogle Scholar
  37. 37.
    Hu YY, Huang WM (2004) Elastic and elastic-plastic analysis of multilayer thin films: closed-form solutions. J Appl Phys 96(8):4154–4160. doi: 10.1063/1.1786339 CrossRefGoogle Scholar
  38. 38.
    Zhao X, Xiao P (2006) Residual stresses in thermal barrier coatings measured by photoluminescence piezospectroscopy and indentation technique. Surf CoatTechnol 201(3–4):1124–1131CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2012

Authors and Affiliations

  • J. G. Zhu
    • 1
    • 2
  • H. M. Xie
    • 1
  • Y. J. Li
    • 1
  • Z. X. Hu
    • 1
  • Q. Luo
    • 3
  • C. Z. Gu
    • 3
  1. 1.AML, Department of Engineering MechanicsTsinghua UniversityBeijingChina
  2. 2.College of Civil Engineering and MechanicsJiangsu UniversityZhenjiangChina
  3. 3.Institute of PhysicsChinese Academic of SciencesBeijingChina

Personalised recommendations