Experimental Mechanics

, Volume 52, Issue 9, pp 1555–1558 | Cite as

Ex Vivo Coronary Stent Implantation Evaluated with Digital Image Correlation

  • L. Horny
  • H. Chlup
  • R. Zitny
  • T. Vonavkova
  • J. Vesely
  • P. Lanzer
Brief Technical Note

Abstract

Intracoronary stenting (PCI) has become standard revascularization technique to reopen blocked arteries. Although significant progress in stenting technology and implantation techniques has been made a number of problems remain. Specifically, stent sizing and inflation pressures are still a matter of scientific debates. Despite a large number of biomechanical computational simulations experimental data are rare, likely due to technical difficulties to measure dilatation pressures and coronary dimensions in the same settings. Our study shows that valuable data can be obtained by employing digital image correlation for 3D strain measurement during stent inflation ex-vivo that can provide further insight into the stent–artery wall interactions.

Keywords

Artery wall–stent interaction Coronary stent Digital image correlation Experimental implantation Strain 

References

  1. 1.
    Lanzer P, Gijsen FJH, Topoleski LDT, Holzapfel GA (2010) Call for standards in technical documentation of intracoronary stents. Herz 35:27–33. doi:10.1007/s00059-010-3278-6 CrossRefGoogle Scholar
  2. 2.
    Moore JE Jr (2009) Biomechanical issues in endovascular device design. J Endovasc Ther 16(Suppl 1):I1–I11. doi:10.1583/08-2605.1 Google Scholar
  3. 3.
    Kiousis DE, Wulff AR, Holzapfel GA (2009) Experimental studies and numerical analysis of the inflation and interaction of vascular balloon catheter-stent systems. Ann Biomed Eng 37:315–330. doi:10.1007/s10439-008-9606-9 CrossRefGoogle Scholar
  4. 4.
    Simons JW, Dalal A, Shockey DA (2010) Load deformation behavior of Nitinol stents. Exp Mech 50:835–843. doi:10.1007/s11340-010-9341-7 CrossRefGoogle Scholar
  5. 5.
    Mani G, Feldman MC, Patel D, Agrawal CM (2007) Coronary stents: materials perspective. Biomaterials 28:1689–1710. doi:10.1016/j.biomaterials.2006.11.042 CrossRefGoogle Scholar
  6. 6.
    Grenacher L, Rohde S, Gänger E, Deutsch J, Kauffmann GW, Richter GM (2006) In vitro comparison of self-expanding versus balloon-expandable stents in a human ex vivo model. Cardiovasc Intervent Radiol 29:249–254. doi:10.1007/s00270-004-0295-y CrossRefGoogle Scholar
  7. 7.
    Freeman JW, Snowhill PB, Nosher JL (2010) A link between stent radial forces and vascular wall remodeling: The discovery of an optimal stent radial force for minimal vessel restenosis. Connect Tissue Res 51:314–326. doi:10.3109/03008200903329771 CrossRefGoogle Scholar
  8. 8.
    Holzapfel GA, Stadler M, Gasser TC (2005) Changes in the mechanical environment of stenotic arteries during interaction with stents: Computational assessment of parametric stent designs. J Biomech Eng 127:166–180. doi:10.1115/1.1835362 CrossRefGoogle Scholar
  9. 9.
    Pericevic I, Lally C, Toner D, Kelly DJ (2009) The influence of plaque composition on underlying arterial wall stress during stent expansion: The case for lesion-specific stents. Med Eng Phys 31:428–433. doi:10.1016/j.medengphy.2008.11.005 CrossRefGoogle Scholar
  10. 10.
    Mortier P, Holzapfel GA, De Beule M, Van Loo D, Taeymans Y, Segers P, Verdonck P, Verhegghe B (2010) A novel simulation strategy for stent insertion and deployment in curved coronary bifurcations: Comparison of three drug-eluting stents. Ann Biomed Eng 38:88–99. doi:10.1007/s10439-009-9836-5 CrossRefGoogle Scholar
  11. 11.
    Gastaldi D, Morlacchi S, Nichetti R, Capelli C, Dubini G, Petrini L, Migliavacca F (2010) Modelling of the provisional side-branch stenting approach for the treatment of atherosclerotic coronary bifurcations: Effects of stent positioning. Biomech Model Mechanobiol 9:551–561. doi:10.1007/s10237-010-0196-8 CrossRefGoogle Scholar
  12. 12.
    Takashima K, Kitou T, Mori K, Ikeuchi K (2007) Simulation and experimental observation of contact conditions between stents and artery models. Med Eng Phys 29:326–335. doi:10.1016/j.medengphy.2006.04.003 CrossRefGoogle Scholar
  13. 13.
    Zhang D, Eggleton CD, Arola DD (2002) Evaluating the mechanical behavior of arterial tissue using digital image correlation. Exp Mech 42:409–416. doi:10.1007/BF02412146 CrossRefGoogle Scholar
  14. 14.
    Sutton MA, Ke X, Lessner SM, Goldbach M, Yost M, Zhao F, Schreier HW (2008) Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation. J Biomedical Mater Res A 84:178–190. doi:10.1002/jbm.a.31268 CrossRefGoogle Scholar
  15. 15.
    Becker T, Splitthof K, Siebert T, Kletting P (2006) Error estimations of 3D digital image correlation measurements. Proc SPIE 6341:63410F. doi:10.1117/12.695277 CrossRefGoogle Scholar
  16. 16.
    Xu S, Grande-Allen KJ (2010) The evolution of the field of biomechanics through the lens of experimental mechanics. Exp Mech Volume 50:667–682. doi:10.1007/s11340-010-9367-x CrossRefGoogle Scholar
  17. 17.
    Holzapfel GA, Sommer G, Gasser CT, Regitnig P (2005) Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am J Pysiol 289:H2048–H2058. doi:10.1152/ajpheart.00934.2004 Google Scholar
  18. 18.
    Sutton MA, Orteu J-J, Schreier HW (2009) Image correlation for shape, motion and deformation measurements - basic concepts, Theory and Applications. Springer Science+Business, New YorkGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2012

Authors and Affiliations

  • L. Horny
    • 1
  • H. Chlup
    • 1
  • R. Zitny
    • 1
  • T. Vonavkova
    • 1
  • J. Vesely
    • 1
  • P. Lanzer
    • 2
  1. 1.Faculty of Mechanical EngineeringCzech Technical University in PraguePragueCzech Republic
  2. 2.Gesundheitszentrum Bitterfeld/Wolfen gGmbHBitterfeld/WolfenGermany

Personalised recommendations