Experimental Mechanics

, Volume 52, Issue 9, pp 1475–1481 | Cite as

The New Test Method for High Velocity Water Jet Impact

  • S. L. Lopatnikov
  • J. W. Gillespie
  • C. Morand
  • R. Lumpkin
  • J. Dignam
Article

Abstract

Paper presents a simple method of generating a high-speed short water jet (droplet) by over-compression of the water layer sandwiched between bars with high acoustic impedance. The proposed method allows the creation of short high-speed water jets (droplets) with extremely simple and inexpensive equipment. Theoretically, jets with speeds higher than 1500 m/sec can be generated by this method.

Keywords

Rain erosion SHPB Water jet Droplet Impact 

References

  1. 1.
    Gray GT III (2000) Classic Split-Hopkinson Pressure Bar testing. ASM handbook 8. Mechanical testing and evaluation. 488–496Google Scholar
  2. 2.
    Rain Erosion Test Apparatus. Use policies, operating procedures and specimen configuration. Air Force Research Laboratory. Materials and Manufacturing Directorate, Wright-Patterson Air Force base, Ohio, July 2006Google Scholar
  3. 3.
    Schmitt GF, Jt (1971) Materials parameters that govern the rain erosion behavior of polymeric coatings and composites at subsonic velocities. Technical report AFML-71-197. http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=AD0893919
  4. 4.
    ASTM G73 - 10 Standard test method for liquid impingement erosion using rotating apparatus, http://www.astm.org/Standards/G73.htm
  5. 5.
    US ARMY MISSILE RESEARCH and DEVELOPMENT COMMAND. Technical report T-79-42, May 6, 1979. http://mail2web.com/blog/2008/02/holloman-sets-new-land-speed-record/
  6. 6.
    Fasso G Wind-tunnel rain erosion testing of components of aircraft or missiles flying at high speed. RECHERCHE AEROSPATIALE, No. 119, 1967, pp. 39-&Google Scholar
  7. 7.
    Luers JK, Fiscus IB (1984) Nozzle test for simulating heavy rain in a wind tunnel. University of Dayton Research Institute, Final Report for Period February 1983 to February 1984Google Scholar
  8. 8.
    Field JE (1999) Liquid impact: theory, experiment, applications. Wear 233:1–12CrossRefGoogle Scholar
  9. 9.
    Field JE, Lesser MB (1977) On the mechanics of high speed liquid jets. Proc R Soc Lond A 357:143–162CrossRefGoogle Scholar
  10. 10.
    Lesser MB (1981) Analytic solutions of liquid-drop impact problems. Proc R Soc Lond A 377:289–308MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lesser MB, Field JE (1983) The impact of compressible liquids. Ann Rev Fluid Mech 15:97–122CrossRefGoogle Scholar
  12. 12.
    Bowden FP, Brunton JH (1958) Damage to solids by liquid impact at supersonic speeds. Nature 181:873–875CrossRefGoogle Scholar
  13. 13.
    Bowden FP, Brunton JH (1961) The deformation of solids by liquid impact at supersonic speeds. Proc R Soc Lond A263:433–450Google Scholar
  14. 14.
    Seward CR, Pickles CSJ, Field JE (1990) Single- and multiple-impact jet apparatus and results. Proc SPIE 1326:280–290CrossRefGoogle Scholar
  15. 15.
    Seward CR, Pickles CSJ, Field JE, Feng Z (1993) Liquid and solid erosion properties of diamond. Diamond Related Mater 2:606–611CrossRefGoogle Scholar
  16. 16.
    Kennedy CF, Field JE (2002) High speed liquid impact on crossed lamellar material from the shell Strombus gigas. J Mater Sci Letts 21:1457–1460CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Lim AS, Lopatnikov SL, Gillespie JW (2009) Development of the split-Hopkinson pressure bar technique for viscous fluid characterization. Polym Test 28:891–900CrossRefGoogle Scholar
  19. 19.
    Lim AS, Lopatnikov SL, Wagner NJ, Gillespie JW Jr (2010) Investigating of transient response of a shear thickening fluid using a Split-Hopkinson Bar. Rheology Acta 49:879–890CrossRefGoogle Scholar
  20. 20.
    Lim AS, Lopatnikov SL, Wagner NJ, Gillespie JW Jr (2010) An experimental investigation into the failure of a concentrated hard-sphere colloidal suspension during fast squeeze flow. Journal of Non-Newtonian Fluid Mechanics 165:1342–1350CrossRefGoogle Scholar
  21. 21.
    Lim AS, Lopatnikov SL, Wagner NJ et al (2011) Phenomenological modeling of the response of a dense colloidal suspension under dynamic squeezing flow. Journal of Non-Newtonian Fluid Mechanics 166:680–688CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2012

Authors and Affiliations

  • S. L. Lopatnikov
    • 1
  • J. W. Gillespie
    • 1
    • 2
    • 3
  • C. Morand
    • 4
  • R. Lumpkin
    • 4
  • J. Dignam
    • 4
  1. 1.Center for Composite MaterialsUniversity of DelawareNewarkUSA
  2. 2.Department of Material Sciences & EngineeringUniversity of DelawareNewarkUSA
  3. 3.Department of Civil & Environmental EngineeringUniversity of DelawareNewarkUSA
  4. 4.Mentis Sciences, Inc.ManchesterUSA

Personalised recommendations