Experimental Mechanics

, Volume 52, Issue 9, pp 1275–1286 | Cite as

Comparison between Digital Fresnel Holography and Digital Image-Plane Holography: The Role of the Imaging Aperture

Article

Abstract

Optical techniques are now broadly used in the field of experimental mechanics. The main advantages are they are non intrusive and no contact. Moreover optical techniques lead to full spatial resolution displacement maps enabling the computing of mechanical value also in high spatial resolution. For mesoscopic measurements, digital image correlation can be used. Digital holographic interferometry is well suited for quantitative measurement of very small displacement maps on the microscopic scale. This paper presents a detailed analysis so as to compare digital Fresnel holography and digital image-plane holography. The analysis is based on both theoretical and experimental analysis. Particularly, a theoretical analysis of the influence of the aperture and lens in the case of image-plane holography is proposed. Optimal filtering and image recovering conditions are thus established. Experimental results show the appropriateness of the theoretical analysis.

Keywords

Digital holography Phase measurement Displacement measurement Deformation measurement Imaging aperture 

References

  1. 1.
    Schnars U, Jüptner W (1994) Direct recording of holograms by a CCD target and numerical reconstruction. Appl Opt 33:179–181CrossRefGoogle Scholar
  2. 2.
    Yamaguchi I, Zhang T (1997) Phase shifting digital holography. Opt Lett 22:1268–1270CrossRefGoogle Scholar
  3. 3.
    Yamaguchi I, Kato J, Ohta S, Mizuno J (2001) Image formation in phase shifting digital holography and application to microscopy. Appl Opt 40:6177–6186CrossRefGoogle Scholar
  4. 4.
    Cuche E, Bevilacqua F, Depeursinge C (1999) Digital holography for quantitative phase contrast imaging. Opt Lett 24:291–293CrossRefGoogle Scholar
  5. 5.
    De Nicola S, Ferraro P, Finizio A, Pierattin G (2001) Correct-image reconstruction in the presence of severe anamorphism by mean of digital holography. Opt Lett 26:974–976CrossRefGoogle Scholar
  6. 6.
    Picart P, Diouf B, Lolive E, Berthelot J-M (2004) Investigation of fracture mechanisms in resin concrete using spatially multiplexed digital Fresnel holograms. Opt Eng 43:1169–1176CrossRefGoogle Scholar
  7. 7.
    Yamaguchi I, Matsumura T, Kato J (2002) Phase shifting color digital holography. Opt Lett 27:1108–1110CrossRefGoogle Scholar
  8. 8.
    Tankam P, Song Q, Karray M, Li JC, Desse JM, Picart P (2010) Real-time three-sensitivity measurements based on three-color digital Fresnel holographic interferometry. Opt Lett 35:2055–2057CrossRefGoogle Scholar
  9. 9.
    Picart P, Leval J, Mounier D, Gougeon S (2003) Time-averaged digital holography. Opt Lett 28:1900–1902CrossRefGoogle Scholar
  10. 10.
    Onural L (1993) Diffraction from a wavelet point of view. Opt Lett 18:846–848CrossRefGoogle Scholar
  11. 11.
    Kreis Th, Adams M, Jüptner W (1997) Methods of digital holography: a comparison. Proc SPIE 3098:224–233CrossRefGoogle Scholar
  12. 12.
    Li JC, Tankam P, Peng Z, Picart P (2009) Digital holographic reconstruction of large objects using a convolution approach and adjustable magnification. Opt Lett 34:572–574CrossRefGoogle Scholar
  13. 13.
    Wagner C, Seebacher S, Osten W, Jüptner W (1999) Digital recording and numerical reconstruction of lens less Fourier holograms in optical metrology. App Opt 38:4812–4820CrossRefGoogle Scholar
  14. 14.
    Picart P, Leval J (2008) General theoretical formulation of image formation in digital Fresnel holography. J Opt Soc Am A 25:1744–1761CrossRefGoogle Scholar
  15. 15.
    Creath K (1985) Phase shifting speckle interferometry. Appl Opt 24:3053–3058CrossRefGoogle Scholar
  16. 16.
    Kreis Th (1996) Holographic Interferometry – Principles and Methods Akademie Verlag Series in Optical Metrology 1. Akademie Verlag Gmbh, BerlinGoogle Scholar
  17. 17.
    Picart P, Leval J, Piquet F, Boileau J-P, Guimezanes Th, Dalmont J-P (2007) Tracking high amplitude autooscillations with digital Fresnel holograms. Optic Express 15:8263–8274CrossRefGoogle Scholar
  18. 18.
    Aguayo D, Mendoza Santoyo F, De la Torre-Ibarra MH, Salas-Araiza MD, Caloca-Mendez C, Gutierrez Hernandez DA (2010) Insect wing deformation measurements using high speed digital holographic interferometry. Optic Express 18:5661–5667CrossRefGoogle Scholar
  19. 19.
    Pérez-López C, De la Torre-Ibarra MH, Mendoza Santoyo F (2006) Very high speed cw digital holographic interferometry. Optic Express 14:9709–9715CrossRefGoogle Scholar
  20. 20.
    Pedrini G, Tiziani H, Zou Y (1997) Digital double pulse-TV holography. Opt & Las Eng 26:199–219CrossRefGoogle Scholar
  21. 21.
    Doval ÁF, Trillo C (2006) Hybrid opto-numerical quasi Fourier transform digital holographic camera. Proc SPIE 6341:63410ZCrossRefGoogle Scholar
  22. 22.
    Jacquot P (2008) Speckle interferometry: A review of the principal methods in use for experimental mechanics applications. Strain 44:57–69CrossRefGoogle Scholar
  23. 23.
    Goodman JW (1996) Introduction to fourier optics, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  24. 24.
    Picart P, Tankam P, Mounier D, Peng Z, Li JC (2009) Spatial bandwidth extended reconstruction for digital color Fresnel holograms. Optic Express 17:9145–9156CrossRefGoogle Scholar
  25. 25.
    Tankam P, Picart P, Mounier D, Desse JM, Li JC (2010) Method of digital holographic recording and reconstruction using a stacked color image sensor. Appl Opt 49:320–328CrossRefGoogle Scholar
  26. 26.
    Zhang F, Yamaguchi I, Yaroslavsky LP (2004) Algorithm for reconstruction of digital holograms with adjustable magnification. Opt Lett 29:1668–1670CrossRefGoogle Scholar
  27. 27.
    Saldner HO, Molin NE, Stetson KA (1996) Fourier-transform evaluation of phase data in spatially phase-biased TV holograms. Appl Opt 35:332–336CrossRefGoogle Scholar
  28. 28.
    Schedin S, Pedrini G, Tiziani H, Santoyo FM (1999) Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography. Appl Opt 38:7056–7062CrossRefGoogle Scholar
  29. 29.
    Pedrini G, Tiziani H (1997) Quantitative evaluation of two-dimensional dynamic deformations using digital holography. Opt Las Technol 29:249–256CrossRefGoogle Scholar
  30. 30.
    Pedrini G, Froening Ph, Fessler H, Tiziani H (1997) Transient vibration measurements using multipulse digital holography. Opt Las Technol 29:505–511CrossRefGoogle Scholar
  31. 31.
    Dainty JC (1984) Laser speckle and related phenomena. Springer Verlag, BerlinGoogle Scholar
  32. 32.
    Aebischer HA, Waldner S (1999) A simple and effective method for filtering speckle-interferometric phase fringe patterns. Opt Comm 162:205–210CrossRefGoogle Scholar
  33. 33.
    Owner-Petersen P (1991) Decorrelation and fringe visibility: on the limiting behavior of various electronic speckle-pattern correlation interferometers. J Opt Soc Am A 8:1082–1089CrossRefGoogle Scholar
  34. 34.
    Lehmann M (1997) Decorrelation-induced phase errors in Phase Shifting Speckle Interferometry. Appl Opt 36:3657–3667CrossRefGoogle Scholar
  35. 35.
    Lehmann M (1996) Phase-shifting speckle interferometry with unresolved speckles: A theoretical investigation. Opt Comm 128:325–340CrossRefGoogle Scholar
  36. 36.
    Lehmann M (1995) Optimization of wave-field intensities in phase-shifting speckle interferometry. Opt Comm 118:199–206CrossRefGoogle Scholar
  37. 37.
    Middleton D (1960) Introduction to statistical communication theory. Mc Graw Hill, New YorkGoogle Scholar
  38. 38.
    Davenport WB, Root WL (1958) Random signals and noise. Mc Graw Hill, New YorkMATHGoogle Scholar
  39. 39.
    Picart P, Mercier R, Lamare M, Breteau J-M (2001) A simple method for measuring the random variation of an interferometer. Meas Sci Technol 12:1311–1317CrossRefGoogle Scholar
  40. 40.
    Schnars U, Kreis TM, Juptner WPO (1996) Digital recording and numerical reconstruction of holograms: Reduction of the spatial frequency spectrum. Opt Eng 35:977–982CrossRefGoogle Scholar
  41. 41.
    Mundt J, Kreis TM (2010) Digital holographic recording and reconstruction of large scale objects for metrology and display. Opt Eng 49:125801-1–6CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2012

Authors and Affiliations

  1. 1.LAUM CNRSUniversité du MaineLE MANS Cedex 9France
  2. 2.Ecole des Mines d’AlèsALESFrance
  3. 3.ENSIM, École Nationale Supérieure d’Ingénieurs du MansLE MANS Cedex 9France

Personalised recommendations