Experimental Mechanics

, Volume 52, Issue 7, pp 933–944 | Cite as

Extraction of Mechanical Properties with Second Harmonic Detection for Dynamic Nanoindentation Testing

  • G. GuillonneauEmail author
  • G. Kermouche
  • S. Bec
  • J.-L. Loubet


In this article, a new method based on the detection of the second harmonic of the displacement signal to determine mechanical properties of materials from dynamic nanoindentation testing, is presented. With this technique, the Young’s modulus and hardness of homogeneous materials can be obtained at small penetration depths from the measurement of the second harmonic amplitude. With this innovative method, the measurement of the normal displacement is indirectly used, avoiding the need for very precise contact detection. Moreover, the influence of the tip defect and thermal drift on the measurements are reduced. This method was used for dynamic nanoindentation tests performed on fused silica and on an amorphous polymer (PMMA) because these materials are supposed not to exhibit an indentation size effect at small penetration depths. The amplitude of the second harmonic of the displacement signal was correctly measured at small depths, allowing to calculate the Young’s modulus and the hardness of the tested materials. The mechanical properties calculated with this method are in good agreement with values obtained from classical nanoindentation tests.


Nanoindentation Second harmonic detection Dynamic measurements Tip defect Hardness 


  1. 1.
    Tabor D (2000) The hardness of metals, Oxford University Press, s.dGoogle Scholar
  2. 2.
    Tabor D (1970) The hardness of solids. Rev Phys Technol 1(3):145–179MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bulychev SI, Alekhin VP, Shorshorov MK, Ternovskii AP, Shnyrev GD (1975) Determining Young modulus from the indenter penetration diagram. Ind Lab (USSR) (English Translation of Zavodskaya Laboratoriya) 41(9):1409–1412Google Scholar
  4. 4.
    Frohlich F, Grau P, Grellmann W (1977) Performance and analysis of recording microhardness tests. Phys Status Solidi A Appl Res 42(1):79–89CrossRefGoogle Scholar
  5. 5.
    Newey D, Wilkins MA, Pollock HM (1982) An ultra-low-load penetration hardness tester. J Phys E Sci Instrum 15(1):119–122CrossRefGoogle Scholar
  6. 6.
    Pethica JB, Hutchings R, Oliver WC (1983) Hardness measurement at penetration depths as small as 20-nm. Philos Mag A Phys Condens Matt Struct Defect 48(4):593–606Google Scholar
  7. 7.
    Doerner MF, Nix WD (1986) A method for interpreting the data from depth-sensing indentation instruments. J Mat Res 1(4):601–609CrossRefGoogle Scholar
  8. 8.
    Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583CrossRefGoogle Scholar
  9. 9.
    Loubet JL, Bauer M, Tonck A, Bec S, Gauthier-Manuel B (1993) Nano-indentation with a surface force apparatus. NATO Advanced Study Institute Series E 429–447Google Scholar
  10. 10.
    Loubet JL, Georges JM, Meille G (1986) Vickers indentation curves of elastoplastic materials: Microindentation Techniques in Materials Science and Engineering. American Society for Testing and Materials, Philadelphia, Balu, PJ, Lawn BR, s. d. p. 72–89Google Scholar
  11. 11.
    Bertrand-Lambotte P, Loubet JL, Verpy C, Pavan S (2002) Understanding of automotive clearcoats scratch resistance. Thin Solid Films 420–421:281–286CrossRefGoogle Scholar
  12. 12.
    Fischer-Cripps (2002) AC Nanoindentation, Springer-Verlag New York Inc., s.dGoogle Scholar
  13. 13.
    Asif SAS, Wahl KJ, Colton RJ (1999) Nanoindentation and contact stiffness measurement using force modulation with a capacitive load-displacement transducer. Rev Sci Instrum 70(5):2408–2413CrossRefGoogle Scholar
  14. 14.
    King RB (1987) Elastic analysis of some punch problems for a layered medium. Int J Solids Struct 23(12):1657–1664zbMATHCrossRefGoogle Scholar
  15. 15.
    Alkorta J, Martínez-Esnaola JM, Sevillano JG (2005) Absence of one-to-one correspondence between elastoplastic properties and sharp-indentation load–penetration data. J Mater Res 20(2):432–437CrossRefGoogle Scholar
  16. 16.
    Pharr GM, Oliver WC (2004) Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J Mater Res 19(1):3–20CrossRefGoogle Scholar
  17. 17.
    Pharr GM (1998) Measurement of mechanical properties by ultra-low load indentation. Mater Sci Eng A 253(1–2):151–159Google Scholar
  18. 18.
    Hochstetter G, Jimenez A, Loubet JL (1999) Strain-rate effects on hardness of glassy polymers in the nanoscale range. Comparison between quasi-static and continuous stiffness measurements. J Macromol Sci B Phys 38(5):681CrossRefGoogle Scholar
  19. 19.
    Bec S, Tonck A, Georges J-M, Georges E, Loubet J-L (1996) Improvements in the indentation method with a surface force apparatus. Philos Mag A 74(5):1061CrossRefGoogle Scholar
  20. 20.
    Kermouche G, Loubet JL, Bergheau JM (2007) Cone indentation of time-dependent materials: the effects of the indentation strain rate. Mech Mater 39(1):24–38CrossRefGoogle Scholar
  21. 21.
    Pharr GM, Strader JH, Oliver WC (2009) Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement. J Mater Res 24(3):653–666CrossRefGoogle Scholar
  22. 22.
    Cheng Y-T, Cheng C-M (2004) Scaling, dimensional analysis, and indentation measurements. Mater Sci Eng R Rep 44(4–5):91–149CrossRefGoogle Scholar
  23. 23.
    Hochstetter G, Jimenez A, Cano JP, Felder E (2003) An attempt to determine the true stress-strain curves of amorphous polymers by nanoindentation. Tribol Int 36(12):973–985CrossRefGoogle Scholar
  24. 24.
    Sneddon IN (1965) The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Internat J of Engrg Sci 3(1):47–57Google Scholar

Copyright information

© Society for Experimental Mechanics 2011

Authors and Affiliations

  • G. Guillonneau
    • 1
    Email author
  • G. Kermouche
    • 2
  • S. Bec
    • 1
  • J.-L. Loubet
    • 1
  1. 1.Ecole Centrale de Lyon, Laboratoire de Tribologie et Dynamique des SystèmesUniversité de Lyon, UMR 5513 CNRS/ECL/ENISEEcullyFrance
  2. 2.Ecole Nationale d’Ingénieurs de Saint-Etienne, Laboratoire de Tribologie et Dynamique des SystèmesUniversité de Lyon, UMR 5513 CNRS/ECL/ENISESaint-EtienneFrance

Personalised recommendations