Advertisement

Experimental Mechanics

, Volume 52, Issue 7, pp 951–963 | Cite as

Out-of-plane Testing Procedure for Inverse Identification Purpose: Application in Sheet Metal Plasticity

  • T. Pottier
  • P. Vacher
  • F. Toussaint
  • H. Louche
  • T. Coudert
Article

Abstract

Many recent works in inverse identification of constitutive parameters have pointed to the need of tests which exhibit heterogeneous strain paths. The present study details a new testing procedure based on out-of-plane motion capture by Stereo-Image Correlation (SIC). With the original test proposed hereby, a unique sample is deformed on a tensile machine along two perpendicular tensile directions, two perpendicular shear directions and one expansion area. The choice of the sample shape is discussed along with the stereo imaging device, 3D reconstruction and measurement uncertainties. The test sample is made from a sheet of commercially pure titanium. A Finite-Element updating inverse method is applied in order to identify six parameters of an anisotropic plastic constitutive model. Results show that this new testing procedure allows every constitutive parameter of the model to be identified from one and only one test.

Keywords

Full-field measurement Heterogeneous tests Inverse methods Parameter identification Stereo image correlation Plastic constitutive model 

References

  1. 1.
    Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Proc R Soc Lond, A 193:281–297MATHCrossRefGoogle Scholar
  2. 2.
    Ferron G, Makkouk R, Morreale J (1994) A parametric description of orthotropic plasticity in metal sheets. Int J Plast 10(5):431–449MATHCrossRefGoogle Scholar
  3. 3.
    Barlat F, Becker RC, Hayashida Y, Maeda Y, Yanagawa M, Chung K, Brem JC, Lege DJ, Matsui K, Murtha SJ, Hattori S (1997) Yielding description for solution stenghtened aluminum alloys. Int J Plast 13:385–401CrossRefGoogle Scholar
  4. 4.
    Cazacu O, Barlat F (2003) Application of the theory of representation to describe yielding of anisotropic aluminum alloys. Int J Eng Sci 41(12):1367–1385CrossRefGoogle Scholar
  5. 5.
    Hu W (2007) A novel quadratic yield model to describe the feature of multi-yield-surface of rolled sheet metals. Int J Plast 23:2004–2028MATHCrossRefGoogle Scholar
  6. 6.
    Grédiac M (2004) The use of full-field measurement methods in composite material characterization: interest and limitations. Compos, Part A Appl Sci Manuf 35:751–761CrossRefGoogle Scholar
  7. 7.
    Avril S, Bonnet M, Bretelle AS, Grédiac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco E, Pierron F (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Exp Mech 48:381–402CrossRefGoogle Scholar
  8. 8.
    Kajberg J, Lindkvist G (2004) Characterization of materials subjected to large strains by inverse modeling based on in-plane displacement fields. Int J Solids Struct 41:3439–3459MATHCrossRefGoogle Scholar
  9. 9.
    Pannier Y (2006) Identification de paramètres élastoplastiques par des essais statiquement indéterminés : mise en œuvre expérimentale et validation de la méthode des champs virtuels. PhD thesis, Ecole National Supérieure des Arts et Métiers, FranceGoogle Scholar
  10. 10.
    Belhabib S, Haddadi H, Gaspérini M, Vacher P (2007) Heterogeneous tensile test on elastoplastic metallic sheets: comparison between FEM simulations and full-field strain measurements. Int J Mech Sci 50:14–21CrossRefGoogle Scholar
  11. 11.
    Molimard J, Le Riche R, Vautrin A, Lee JR (2005) Identification of the four orthotropic plate stiffnesses using a single open-hole tensile test. Exp Mech 45:404–411CrossRefGoogle Scholar
  12. 12.
    Meuwissen MHH (1998) An inverse method for mechanical characterization of metal. PhD thesis, Eindhoven University of Technology, NetherlandsGoogle Scholar
  13. 13.
    Cooreman S (2008) Identification of the plastic material behaviour through full-field displacement measurements and inverse methods. PhD thesis, Vrije Universitet Brussel, BelgiqueGoogle Scholar
  14. 14.
    Kuwabara T, Kuroda M, Tvergaard V, Nomura K (2000) Use of abrupt strain path change for determining subsequent yield surface: experimental study with metal sheets. Acta Mater 48:2071–2079CrossRefGoogle Scholar
  15. 15.
    Lecompte D, Smits A, Sol H, Vantomme J, Van Hemelrijck D (2007) Mixed numerical-experimental technique for orthotropic parameter identification using biaxial tensile test on cruciform specimens. Int J Solids Struct 44:1643–1656CrossRefGoogle Scholar
  16. 16.
    Promma N, Raka B, Grédiac M, Toussaint E, LeCam J-B, Balandraud X, Hild F, Application of the virtual fields method to mechanical (2009) characterization of elastomeric materials. Int J Solids Struct 46:698–715MATHCrossRefGoogle Scholar
  17. 17.
    Guélon T, Toussaint E, Le Cam J-B, Promma N, Grédiac M (2009) A new characterisation method for rubber. Polym Test 28(7):715–723CrossRefGoogle Scholar
  18. 18.
    Bruno L, Felice G, Pagnotta L, Poggialini A, Stigliano G (2008) Elastic characterization of orthotropic plates of any shape via static testing. Int J Solids Struct 45:908–920MATHCrossRefGoogle Scholar
  19. 19.
    Chamekh A, BelHadjSalah H, Hambli R, Gahbiche A (2006) Inverse identification using the bulge test and artificial neural networks. J Mater Process T echnol 177(1–3):307–310CrossRefGoogle Scholar
  20. 20.
    Ghouati O, Gelin JC (2001) A finite element-based identification method for complex metallic material behaviours. Comput Mater Sci 21:57–68CrossRefGoogle Scholar
  21. 21.
    Forestier R (2004) Développement d’une méthode d’identifcation de paramètres matériaux par analyse inverse couplée avec un modèle éléments-finis 3D. PhD thesis, Ecole Nationale Supérieure des Mines de ParisGoogle Scholar
  22. 22.
    Garcia D, Orteu JJ, Penazzi L (2002) A combined temporal tracking and stereo-correlation technique for accurate measurement of 3D displacements: application to sheet metal forming. J Mater Process Technol 125–126:736–742CrossRefGoogle Scholar
  23. 23.
    Coudert T (2005) Reconstruction tridimensionnelle du volume intérieur d’une chaussure: évaluation du chaussant. PhD thesis, Université de SavoieGoogle Scholar
  24. 24.
    Vacher P, Dumoulin S, Morestin F, Mguil-Touchal S (1999) Bidimensional strain measurement using digital images. Proc Inst Mech Eng 213:811–817Google Scholar
  25. 25.
    Sutton MA, Yan JH, Tiwari V, Schreier WH, Orteu JJ (2008) The effect of out-of-plane motion on 2D and 3D digital image correlation measurements. Opt Lasers Eng 46:746–757CrossRefGoogle Scholar
  26. 26.
    Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    De Almeida O, Lagattu F, Brillaud J (2008) Analysis by a 3D DIC technique of volumetric deformation gradients: application to polypropylene/EPR/talc composites. Compos, Part A 39:1210–1217CrossRefGoogle Scholar
  28. 28.
    Haddadi H, Belhabib S (2008) Use of rigid-body motion for the investigation and estimation of the measurement errors related to digital image correlation technique. Opt Lasers Eng 46:185–196CrossRefGoogle Scholar
  29. 29.
    Pan B, Xie H, Gao J, Asundi A (2008) Improved speckle projection profilometry for out-of-plane shape measurement. Appl Opt 47:5527–5533CrossRefGoogle Scholar
  30. 30.
    Pan B, Lu Z, Xie H (2010) Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation. Opt Lasers Eng 48:469–477CrossRefGoogle Scholar
  31. 31.
    Chambard J-P, Jaminion S, Tazeroualti M, Galerne C, Hild F (2009) 3D displacement field measurement by digital image correlation - metrological study and application to composite structures. In: Comptes Rendus des JNC 16 – ToulouseGoogle Scholar
  32. 32.
    Garcia D (2001) Mesure de formes et de champs de déplacements tridimensionnels par stéréo-corrélation d’images. PhD thesis, Institut National Polytechnique de ToulouseGoogle Scholar
  33. 33.
    Fazzini M (2009) Développement de méthodes d’intégration des mesures de champs. PhD thesis, Université de Toulouse, FranceGoogle Scholar
  34. 34.
    Toussaint F, Tabourot L, Ducher F (2008) Experimental and numerical analysis of the forming process of CP titanium scoliotic instrumentation. J Mater Process Technol 197:10–16CrossRefGoogle Scholar
  35. 35.
    Haddadi H, Bouvier S, Banu M, Maier C, Teodosiu C (2006) Towards an accurate description of the anisotropic behaviour of sheet metals under large plastic deformations: modelling, numerical analysis and identification. Int J Plast 22:2226–2271MATHCrossRefGoogle Scholar
  36. 36.
    Le Port A, Toussaint F, Arrieux R (2009) Finite element study and sensitivity analysis of the deep-drawing formability of commercially pure titanium. Int J Mater Form 2:121–129CrossRefGoogle Scholar
  37. 37.
    Boissière R (2008) Effet de la température sur les capacités de mise en forme d’alliages de magnésium corroyés. PhD thesis, INP Grenoble, Université de Savoie, FranceGoogle Scholar
  38. 38.
    Pottier T (2010) Identification paramétrique par recalage de modèles éléments finis couplée à des mesures de champs cinématiques et thermiques. PhD thesis, Université de Savoie, FranceGoogle Scholar
  39. 39.
    Kleinermann J-P (2000) Identification paramétrique et optimisation des procédés de mise en forme par problème inverse. PhD thesis, Université de Liège, BelgiqueGoogle Scholar
  40. 40.
    Gelin JC, Ghouati O, Paquier P (1998) Modelling and control of hydroforming processes for flanges forming. Ann CIRP 47(1):213–216CrossRefGoogle Scholar
  41. 41.
    Harth T, Schwan S, Lehn J, Kollmann FG (2004) Identification of material parameters for inelastic constitutive models: statistical analysis and design of experiments. Int J Plast 20:1403–1440MATHCrossRefGoogle Scholar
  42. 42.
    Amiot F, Hild F, Roger J-P (2007) Identification of elastic property and loading fields from full-field displacement measurements. Int J Solids Struct 44:2863–2887MATHCrossRefGoogle Scholar
  43. 43.
    Nakamura T, Liu Y (2007) Determination of nonlinear properties of thermal sprayed ceramic coatings via inverse analysis. Int J Solids Struct 44:1990–2009MATHCrossRefGoogle Scholar
  44. 44.
    Pottier T, Toussaint F, Vacher P (2011) Contribution of heterogeneous strain field measurements and boundary conditions modelling in inverse identification of material parameters. Eur J Mech A/Solids 30:372–382CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2011

Authors and Affiliations

  • T. Pottier
    • 1
  • P. Vacher
    • 2
  • F. Toussaint
    • 2
  • H. Louche
    • 3
  • T. Coudert
    • 4
  1. 1.Chiang Mai University, Faculty of EngineeringDepartment of Mechanical EngineeringChiang MaiThailand
  2. 2.Laboratoire SYMMEUniversité de SavoieAnnecy le Vieux CedexFrance
  3. 3.Laboratoire de Mécanique et Génie CivilUniversité Montpellier IIMontpellier CedexFrance
  4. 4.SINTEF Materials and ChemistryTrondheimNorway

Personalised recommendations