Experimental Mechanics

, Volume 51, Issue 4, pp 491–507

Towards High Performance Digital Volume Correlation

Article

Abstract

We develop speed and efficiency improvements to a three-dimensional (3D) digital volume correlation (DVC) algorithm, which measures displacement and strain fields throughout the interior of a material. Our goal is to perform DVC with resolution comparable to that achieved in 2D digital image correlation, in time that is commensurate with the image acquisition time. This would represent a significant improvement over the current state-of-the-art available in the literature. Using an X-ray micro-CT scanner, we can resolve features at the 5 micron scale, generating 3D images with up to 36 billion voxels. We compute twelve degrees-of-freedom at each correlation point and utilize tricubic spline interpolation to achieve high accuracy. We improve the algorithm’s speed and robustness through an improved coarse search, efficient implementation of spline interpolation, and using smoothing splines to address noisy image data. For DVC, the volume of data, number of correlation points, and work to solve each correlation point grow cubically. We therefore employ parallel computing to handle this tremendous increase in computational and memory requirements. We demonstrate the application of DVC using simulated deformations of 3D micro-CT scans of polymer samples with embedded particles forming an internal pattern.

Keywords

Digital volume correlation X-ray tomography Strain measurement Parallel computing Smoothing splines 

References

  1. 1.
    Efstathiou C, Sehitoglu H, Lambros J (2010) Multiscale strain measurements of plastically deforming polycrystalline titanium: Role of deformation heterogeneities. Int J Plast 26:93–106CrossRefGoogle Scholar
  2. 2.
    Liu C (2005) On the minimum size of representative volume element: An experimental investigation. Exp Mech 45(3):238–243CrossRefGoogle Scholar
  3. 3.
    Moulart R, Rotinat R, Pierron F (2009) Full-field evaluation of the onset of microplasticity in a steel specimen. Mech Mater 41:1207–1222CrossRefGoogle Scholar
  4. 4.
    Bay BK, Smith TS, Fyhrie DP, Saad M (1999) Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp Mech 39:217–226CrossRefGoogle Scholar
  5. 5.
    Liu L, Morgan EF (2007) Accuracy and precision of digital volume correlation in quantifying displacements and strains in trabecular bone. J Biomech 40:3516–3520CrossRefGoogle Scholar
  6. 6.
    Smith TS, Bay BK, Rashid MM (2002) Digital volume correlation including rotational degrees of freedom during minimization. Exp Mech 42:272–278CrossRefGoogle Scholar
  7. 7.
    Zauel R, Yeni YN, Bay BK, Dong XN, Fyhrie DP (2006) Comparison of the linear finite element prediction of deformation and strain of human cancellous bone to 3D digital volume correlation measurements. J Biomech Eng 128:1–6CrossRefGoogle Scholar
  8. 8.
    Lenoir N, Bornert M, Desrues J, Bésuelle P, Viggiani G (2007) Volumetric digital image correlation applied to X-ray microtomography images from triaxial compression tests on argillaceous rock. Strain 43:193–205CrossRefGoogle Scholar
  9. 9.
    Roux S, Hild F, Viot P, Bernard D (2008) Three-dimensional image correlation from X-ray computed tomography of solid foam. Composites: Part A 39:1253–1265CrossRefGoogle Scholar
  10. 10.
    Forsberg F, Sjödahl M, Mooser R, Hack E, Wyss P (2010) Full three-dimensional strain measurements on wood exposed to three-point bending: analysis by use of digital volume correlation applied to synchrotron radiation micro-computed tomography image data. Strain 46:47–60CrossRefGoogle Scholar
  11. 11.
    Forsberg F, Siviour CR (2009) 3D deformation and strain analysis in compacted sugar using X-ray microtomography and digital volume correlation. Meas Sci Technol 20:1–8CrossRefGoogle Scholar
  12. 12.
    Hall SA, Bornert M, Desrues J, Pannier Y, Lenoir N, Viggiani G, Besuelle P (2010) Discrete and continuum analysis of localised deformation in sand using X-ray μCT and volumetric digital image correlation. Geotechnique 60(5):315–322CrossRefGoogle Scholar
  13. 13.
    Rannou J, Limodin N, Réthoré J, Gravouil A, Ludwig W, Baïetto-Dubourg MC, Buffière JY, Combescure A, Hild F, Roux S (2010) Three dimensional experimental and numerical multiscale analysis of a fatigue crack. Comput Methods Appl Mech Eng 199:1307–1325CrossRefGoogle Scholar
  14. 14.
    Carroll J, Efstathiou C, Lambros J, Sehitoglu H, Hauber B, Spottswood S, Chona R (2009) Investigation of fatigue crack closure using multiscale image correlation experiments. Eng Fract Mech 76:2384–2398CrossRefGoogle Scholar
  15. 15.
    Franck C, Hong S, Maskarinec S, Tirrell D, Ravichandran G (2007) Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation. Exp Mech 47:427–438CrossRefGoogle Scholar
  16. 16.
    Germaneau A, Doumalin P, Dupré JC (2007) 3D strain field measurement by correlation of volume images using scattered light: recording of images and choice of marks. Strain 43:207–218CrossRefGoogle Scholar
  17. 17.
    Haldrup K, Nielsen S, Mishnaevsky Jr L, Beckman F, Wert J (2006) 3-dimensional strain fields from tomographic measurements. In: Proceedings of SPIE 6318, 63,181BGoogle Scholar
  18. 18.
    Verhulp E, van Rietbergen B, Huiskes R (2004) A three-dimensional digital image correlation technique for strain measurements in microstructures. J Biomech 37:1313–1320CrossRefGoogle Scholar
  19. 19.
    Limodin N, Réthoré J, Adrien J, Buffière JY, Hild F, Roux S (2010) Analysis and artifact correction for volume correlation measurements using tomographic images from a laboratory x-ray source. Exp Mech. doi:10.1007/s11340-010-9397-4
  20. 20.
    Hild F, Maire E, Roux S, Witz JF (2009) Three-dimensional analysis of a compression test on stone wool. Acta Mater 57:3310–3320CrossRefGoogle Scholar
  21. 21.
    Kobayashi M, Toda H, Kawai Y, Ohgaki T, Uesugi K, Wilkinson DS, Kobayashi T, Aoki Y, Nakazawa M (2008) High-density three-dimensional mapping of internal strain by tracking microstructural features. Acta Mater 56:2167–2181CrossRefGoogle Scholar
  22. 22.
    Bruck H, McNeill S, Sutton M, Peters III W (1989) Digital image correlation using Newton–Raphson method of partial differential correction. Exp Mech 29:261–267CrossRefGoogle Scholar
  23. 23.
    Schreier HW, Braasch JR, Sutton MA (2000) Systematic errors in digital image correlation caused by intensity interpolation. Opt Eng 39:2915–2921CrossRefGoogle Scholar
  24. 24.
    MathWorks, Inc (2009) MATLAB. Natick, MAGoogle Scholar
  25. 25.
    Chu T, Ranson W, Sutton M, Peters W (1985) Applications of digital-image-correlation techniques to experimental mechanics. Exp Mech 25:232–244CrossRefGoogle Scholar
  26. 26.
    Schoenberg IJ (1946) Contributions to the problem of approximation of equidistant data by analytic functions. Q Appl Math 4:45–99MathSciNetGoogle Scholar
  27. 27.
    Dierckx P (1993) Curve and surface fitting with splines. Oxford University PressGoogle Scholar
  28. 28.
    de Boor C (1978) A practical guide to splines. Springer-VerlagGoogle Scholar
  29. 29.
    Buis PE, Dyksen WR (1996) Efficient vector and parallel manipulation of tensor products. ACM Trans Math Softw 22(1):18–23CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    McCalpin JD (1995) Memory bandwidth and machine balance in current high performance computers. IEEE Computer Society Technical Committee on Computer Architecture (TCCA) NewsletterGoogle Scholar
  31. 31.
    Bartels RH, Beatty JC, Barsky BA (1995) An introduction to splines for use in computer graphics and geometric modeling. Morgan KaufmannGoogle Scholar
  32. 32.
    Anderson E et al (1999) LAPACK users’ guide, 3rd edn. SIAMGoogle Scholar
  33. 33.
    Reinsch CH (1967) Smoothing by spline functions. Numer Math 10:177–183CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    MPI Forum (2009) MPI: a message-passing interface standard. http://www.mpi-forum.org/
  35. 35.
    Goodier JN (1933) Concentration of stress around spherical and cylindrical inclusions and flaws. J Appl Mech 55(7):39–44Google Scholar
  36. 36.
    Lötters JC, Olthuis W, Veltink PH, Bergveld P (1997) The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J Micromechanics Microengineering 7:145–147CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2010

Authors and Affiliations

  1. 1.Computer ScienceUniversity of IllinoisUrbana-ChampaignUSA
  2. 2.Aerospace EngineeringUniversity of IllinoisUrbana-ChampaignUSA

Personalised recommendations