Advertisement

Experimental Mechanics

, Volume 51, Issue 6, pp 959–970 | Cite as

Analysis and Artifact Correction for Volume Correlation Measurements Using Tomographic Images from a Laboratory X-ray Source

  • N. Limodin
  • J. Réthoré
  • J. Adrien
  • J.-Y. Buffière
  • F. HildEmail author
  • S. Roux
Article

Abstract

The effects of three artifacts (reconstruction, beam hardening and temperature of the X-ray tube) associated with the use of a lab tomograph are analyzed in terms of their induced biases for Digital Volume Correlation (DVC) from a series of reconstructed volumes acquired successively. The most detrimental effect is due to spurious dilatational strains induced by temperature variations in the tomograph. If they are not accounted for, any quantitative kinematic measurement is impossible for strain levels below 0.5%.

Keywords

Quantitative kinematic measurements Reconstruction artifacts Thermal expansion X-ray computed microtomography 

Notes

Acknowledgement

This work was funded by Agence Nationale de la Recherche under the grant ANR-09-BLAN-0009-01 (RUPXCUBE Project).

References

  1. 1.
    Ambrose J, Hounsfield GN (1973) Computerized transverse axial tomography. Br J Radiol 46(542):148–149Google Scholar
  2. 2.
    Hounsfield GN (1973) Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol 46(552):1016–22CrossRefGoogle Scholar
  3. 3.
    Baruchel J, Buffière J-Y, Maire E, Merle P, Peix G (2000) X-Ray tomography in material sciences. Hermes Science, ParisGoogle Scholar
  4. 4.
    Bernard D (ed) (2008) 1st conference on 3D-imaging of materials and systems 2008. ICMCB, BordeauxGoogle Scholar
  5. 5.
    Ludwig O, Dimichiel M, Salvo L, Suéry M, Falus P (2005) In situ Three-dimensional microstructural investigation of solidification of an Al-Cu alloy by ultrafast X-ray microtomography. Metall Mater Trans A 36(6):1515–1523CrossRefGoogle Scholar
  6. 6.
    Maire E, Colombo P, Adrien J, Babout L, Biasetto L (2007) Characterization of the morphology of cellular ceramics by 3D image processing of X-ray tomography. J Eur Ceram Soc 27:1973–1981CrossRefGoogle Scholar
  7. 7.
    Juettner T, Moertel H, Svinka V, Svinka R (2007) Structure of kaoline-alumina based foam ceramics for high temperature applications. J Eur Ceram Soc 27:1435–1441CrossRefGoogle Scholar
  8. 8.
    Chotarda TJ, Smith A, Boncoeur MP, Fargeot D, Gault C (2003) Characterisation of early stage calcium aluminate cement hydration by combination of non-destructive techniques: acoustic emission and X-ray tomography. J Eur Ceram Soc 23:2211–2223.CrossRefGoogle Scholar
  9. 9.
    Maire E, Fazekas A, Salvo L, Dendievel R, Youssef S, Cloetens P, Letang JM (2003) X-ray tomography applied to the characterization of cellular materials. Related finite element modeling problems. Comp Sci Tech 63(16): 2431–2443CrossRefGoogle Scholar
  10. 10.
    Babout L, Maire E, Buffière J-Y, Fougères R (2001) Characterisation by X-ray computed tomography of decohesion, porosity growth and coalescence in model metal matrix composites. Acta Mater 49(11):2055–2063CrossRefGoogle Scholar
  11. 11.
    Bontaz-Carion J, Pellegrini Y-P (2006) X-ray microtomography analysis of dynamic damage in tantalum. Adv Eng Mater 8(6):480–486CrossRefGoogle Scholar
  12. 12.
    Sinclair R, Preuss M, Maire E, Buffière J-Y, Bowen P, Withers PJ (2004) The effect of fibre fractures in the bridging zone of fatigue cracked Ti-6Al-4V/SiC fibre composites. Acta Mater 52(6):1423–1438CrossRefGoogle Scholar
  13. 13.
    Ferrié E, Buffière J-Y, Ludwig W, Gravouil A, Edwards L (2006) Fatigue crack propagation: in situ visualization using X-ray microtomography and 3D simulation using the extended finite element method. Acta Mater 54(4):1111–1122CrossRefGoogle Scholar
  14. 14.
    Buffière J-Y, Ferrié E, Proudhon H, Ludwig W (2006) Three-dimensional visualisation of fatigue cracks in metals using high resolution synchrotron X-ray micro-tomography. Mater Sci Technol 22(9):1019–1024CrossRefGoogle Scholar
  15. 15.
    Nielsen SF, Poulsen HF, Beckmann F, Thorning C, Wert JA (2003) Measurements of plastic displacement gradient components in three dimensions using marker particles and synchrotron X-ray absorption microtomography. Acta Mater 51(8):2407–2415CrossRefGoogle Scholar
  16. 16.
    Bay BK, Smith TS, Fyhrie DP, Saad M (1999) Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp Mech 39:217–226CrossRefGoogle Scholar
  17. 17.
    Bornert M, Chaix J-M, Doumalin P, Dupré J-C, Fournel T, Jeulin D, Maire E, Moreaud M, Moulinec H (2004) Mesure tridimensionnelle de champs cinématiques par imagerie volumique pour l’analyse des matériaux et des structures. Inst Mes Métrol 4:43–88Google Scholar
  18. 18.
    McKinley TO, Bay BK (2003) Trabecular bone strain changes associated with subchondral stiffening of the proximal tibia. J Biomech 36(2):155–163CrossRefGoogle Scholar
  19. 19.
    Roux S, Hild F, Viot P, Bernard D (2008) Three dimensional image correlation from X-Ray computed tomography of solid foam. Comp Part A 39(8):1253–1265CrossRefGoogle Scholar
  20. 20.
    Réthoré J, Tinnes J-P, Roux S, Buffière J-Y, Hild F (2008) Extended three-dimensional digital image correlation (X3D-DIC). C R Méc 336:643–649zbMATHGoogle Scholar
  21. 21.
    Limodin N, Réthoré J, Buffière J-Y, Gravouil A, Hild F, Roux S (2009) Crack closure and stress intensity factor measurements in nodular graphite cast iron using 3D correlation of laboratory X-ray microtomography images. Acta Mater 57(14):4090–4101CrossRefGoogle Scholar
  22. 22.
    Rannou J, Limodin N, Réthoré J, Gravouil A, Ludwig W, Baïetto-Dubourg M-C, Buffière J-Y, Combescure A, Hild F, Roux S (2010) Three dimensional experimental and numerical multiscale analysis of a fatigue crack. Comput Methods Appl Mech Eng 199:1307–1325CrossRefGoogle Scholar
  23. 23.
    Kak AC, Slaney M (1988) Principles of computerized tomographic imaging. IEEE, New YorkzbMATHGoogle Scholar
  24. 24.
    Stock SR (2008) MicroComputed tomography: methodology and applications. CRC, Boca RatonCrossRefGoogle Scholar
  25. 25.
    Stock SR (2008) Recent advances in X-Ray microtomography applied to materials. Int Mater Rev 53(3):129–181CrossRefGoogle Scholar
  26. 26.
    Davis GR, Elliot JC (2006) Artefacts in X-ray microtomography of materials. Mater Sci Technol 22(9):1011–1018CrossRefGoogle Scholar
  27. 27.
  28. 28.
    Rivers ML, Wang Y (2006) Recent developments in microtomography at GeoSoilEnviroCARS. In: Bonse U (ed) Developments in X-ray tomography V, vol 6318. SPIE, Bellingham, pp 0J-1-15Google Scholar
  29. 29.
    Ketcham RA (2006) New algorithms for ring artefact removal. In: Bonse U (ed) Developments in X-ray tomography V, vol 6318. SPIE, Bellingham, pp 00-1-15Google Scholar
  30. 30.
    Salmon PL, Liu X, Sasov A (2009) A post scan method for correcting artefacts of slow geometry changes during micro-tomographic scans. J X-Ray Sci Technol 17:161–174Google Scholar
  31. 31.
    Feldkamp LA, Davis LC, Kress JW (1984) Practical cone beam algorithm. J Opt Soc Am A1:612–619CrossRefGoogle Scholar
  32. 32.
    Hild F, Maire E, Roux S, Witz J-F (2009) Three dimensional analysis of a compression test on stone wool. Acta Mater 57:3310–3320CrossRefGoogle Scholar
  33. 33.
    De Vriendt AB (1987) La transmission de la chaleur. Morin, QuébecGoogle Scholar
  34. 34.
    Besnard G, Hild F, Roux S (2006) “Finite-element” displacement fields analysis from digital images: application to Portevin-Le Chatelier bands. Exp Mech 46:789–803CrossRefGoogle Scholar
  35. 35.
    Schreier HW, Braasch JR, Sutton MA (2000) Systematic errors in digital image correlation caused by intensity interpolation. Opt Eng 39(11):2915–2921CrossRefGoogle Scholar
  36. 36.
    Fayolle X, Calloch S, Hild F (2007) Controlling testing machines with digital image correlation. Exp Tech 31(3):57–63CrossRefGoogle Scholar
  37. 37.
    Triconnet K, Derrien K, Hild F, Baptiste D (2009) Parameter choice for optimized digital image correlation. Opt Lasers Eng 47:728–737CrossRefGoogle Scholar
  38. 38.
    Dierickx P (1996) Etude de la microstructure et des mécanismes d’endommagement de fontes G.S. ductiles: influence des traitements thermiques de ferritisation. PhD dissertation, INSA de LyonGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2010

Authors and Affiliations

  • N. Limodin
    • 1
  • J. Réthoré
    • 2
  • J. Adrien
    • 1
  • J.-Y. Buffière
    • 1
  • F. Hild
    • 3
    Email author
  • S. Roux
    • 3
  1. 1.Laboratoire Matériaux, Ingénierie et Sciences (MATEIS)INSA-Lyon / UMR CNRS 5510VilleurbanneFrance
  2. 2.Laboratoire de Mécanique des Contacts et des Structures (LaMCoS)INSA-Lyon / UMR CNRS 5259VilleurbanneFrance
  3. 3.Laboratoire de Mécanique et Technologie (LMT-Cachan)ENS Cachan / CNRS / UPMC / PRES UniverSud ParisCachan CedexFrance

Personalised recommendations