Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Modelling of a Cellular Rubber with Nonlinear Viscosity Functions

  • 371 Accesses

  • 10 Citations

Abstract

In this paper a porous carbon black-filled rubber is investigated under uniaxial tension. On the experimental site the main focus of attention lies on the Mullins effect, the thixotropic and the viscoelastic behaviour. Because of the two phase character of cellular rubber, the Theory of Porous Media is taken into account. Performing a proper preconditioning, the Mullins effect can be eliminated. Hence, it is not included in the material model. The constitutive model for the basic elasticity is based on a polynomial approach for an incompressible material which is expanded by a volumetric term to include the structural compressibility. Finally, the concept of finite viscoelasticity is applied introducing an intermediate configuration. Nonlinear relaxation functions are used to model the process dependent relaxation times, to simulate the thixotropy and the highly nonlinear behaviour concerning the deformation and feedrate. The material parameters of the model are estimated using a stochastic identification algorithm.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38

References

  1. 1.

    Vroomen G (2004) EPDM-Moosgummi für die Tür- und Fensterdichtungen von Kraftfahrzeugen. GAK 3(57):163–176

  2. 2.

    Chen W, Lu F, Winfree N (2002) High-strain-rate compressive behavior of a rigid polyurethane foam with various densities. Exp Mech 42:65–73

  3. 3.

    Dick JS, Annicelli RA (1999) Variation der vernetzungs- und treibreaktion für die steuerung von zellendichte und -struktur von zelligen vulkanisaten. GAK 52(4):297–308

  4. 4.

    Fuchs E, Reinartz KS (2001) Optimierung der Herstellung von Moosgummi. GAK 54(4):245–251

  5. 5.

    Haberstroh E, Kremers A (2004) Expansion von chemisch geschäumten Kautschukmischungen. Kautsch Gummi Kunstst 3(57):105–108

  6. 6.

    Haberstroh E, Kremers A, Epping K (2005) Extrusion von physikalisch geschäumten Kautschukprofilen. Kautsch Gummi Kunstst 9(58):449–454

  7. 7.

    Besdo D, Ihlemann J (1996) Zur Modellierung des Stoffverhaltens von Elastomeren. Kautsch Gummi Kunstst 49:495–503

  8. 8.

    Göktepe S, Miehe C (2005) A micro-macro approach to rubber-like materials. Part III: the micro-sphere model of anisotropic Mullins-type damage. J Mech Phys Solids 53:2259–2283

  9. 9.

    Miehe C, Keck J (2000) Superimposed finite elastic–viscoelastic–plastoelastic stress response with damage in filled rubbery polymers. Experiments, modelling and algorithmic implementation. J Mech Phys Solids 48:323–365

  10. 10.

    Mullins L (1947) Effect of stretching on the properties of rubber. J Rubber Res 16:275–289

  11. 11.

    Mullins L (1969) Softening of rubber by deformation. Rubber Chem Technol 42:339–362

  12. 12.

    Barnes H (1997) Thixotropy—a review. J Non-Newton Fluid Mech 70:1–33

  13. 13.

    Diebels S (1999) A micropolar theory of porous media: constitutive modelling. Transport Porous Med 34:193–208

  14. 14.

    Ehlers W (1993) Constitutive equations for granular materials in geomechanical context. In: Hutter K (ed) Continuum mechanics in environmental sciences. CISM International centre for Mechanical Sciences, vol 337, pp 313–402. Springer, Berlin

  15. 15.

    Clapeyron BPE (1834) Puissance motrice de la chaleur. J Ecol R Polytech 14:153–190

  16. 16.

    Yeoh OH, Flemming PD (1997) A new attempt to reconcile the statistical and phenomenological theories of rubber elasticity. J Polym Sci Part B Polym Phys 35:1919–1931

  17. 17.

    Ehlers W, Eipper G (1999) Finite elastic deformations in liquid-saturated and empty porous solids. Transport Porous Med 34:179–191

  18. 18.

    Haupt P (1993) On the mathematical modelling of material behaviour in continuum mechanics. Acta Mech 100:129–154

  19. 19.

    Sedlan K (2001) Viskoelastisches materialverhalten von elastomerwerkstoffen, experimentelle untersuchung und modellbildung. Dissertation, Berichte des Instituts für Mechanik (2/2001), Universität Gesamthochschule Kassel

  20. 20.

    Besdo D, Ihlemann J (2003) A phenomenological constitutive model for rubberlike materials and its numerical applications. Int J Plast 19:1019–1036

  21. 21.

    Ihlemann J (2002) Kontinuumsmechanische Nachbildung hochbelasteter technischer Gummiwerkstoffe. Dissertation, Universität Hannover

  22. 22.

    Lion A (1997) A physically based method to represent the thermo-mechanical behaviour of elastomers. Acta Mech 123:1–25

  23. 23.

    Lion A (2000) Thermomechanik von elastomeren. Berichte des Instituts für Mechanik der Universität Kassel (Bericht 1/2000)

  24. 24.

    Miehe C (1988) Zur numerischen Behandlung thermomechanischer Prozesse. Dissertation, Institut für Baumechanik und Numerische Mechanik, Universität Hannover, Bericht-Nr. F88/6

  25. 25.

    Miehe C, Göktepe S (2005) A micro-macro approach to rubber-like materials. Part II: the micro-sphere model of finite rubber viscoelasticity. J Mech Phys Solids 53:2231–2258

  26. 26.

    Rae PJ, Brown EN (2005) The properties of poly (tetrafluoroethylene) (PTFE) in tension. Polymer 46:8128–8140

  27. 27.

    Perie JN, Calloch S, Cluzel C, Hild F (2002) Analysis of a multiaxial test on a C/C composite by using digital image correlation and a damage model. Exp Mech 42:318–328

  28. 28.

    Zhang D, Eggleton CD, Arola DD (2002) Evaluating the mechanical behaviour of arterial tissue using digital image correlation. Exp Mech 42:409–416

  29. 29.

    Mullins L, Tobin NR (1965) Stress softening in rubber vulcanizates. Part I: use of a strain amplification factor to describe the elastic behavior of filler-reinforced vulcanized rubber. J Appl Polym Sci 9:2993–3009

  30. 30.

    Bueche F (1961) Mullins effect and rubber–filler interaction. J Appl Polym Sci 5:271–281

  31. 31.

    Hanson DE, Hawley M, Houlton R, Chitanvis K, Rae P, Bruce Orler E, Wrobleski DA (2005) Stress softening experiments in silica-filled polydemethylsiloxane provide insight into a mechanism for the Mullins effect. Polymer 46:10989–10995

  32. 32.

    Krawietz A (1986) Materialtheorie. Springer, Berlin

  33. 33.

    Acierno (1976) A nonlinear viscoelastic model with structure-dependent relaxation times, I. Basic formulation. J Non-Newtonian Fluid Mech 1:125–146

  34. 34.

    Cheng DCH (1973) A differential form of constitutive relation for thixotropy. Rheol Acta 12:228–233

  35. 35.

    Truesdell C (1957) Sulle basi delle termomeccanica. Rend Lincei 22:33–38

  36. 36.

    Truesdell CA, Toupin R (1960) The classical field theories. In: Flügge S (Herausgeber), Handbuch der Physik III/1, Springer, Berlin

  37. 37.

    Bowen RM (1980) Incompressible porous media models by use of the theory of mixtures. Int J Eng Sci 18:1129–1148

  38. 38.

    de Boer R (2000) Theory of porous media. Springer, Berlin

  39. 39.

    Coleman BD, Noll W (1963) The thermodynamics of elastic materials with heat conduction and viscosity. Arch Ration Mech Anal 13:167–178

  40. 40.

    Alts T (1979) On the energy-elasticity of rubber-like materials. Prog Colloid Polym Sci 66:367–375

  41. 41.

    Chadwick P (1974) Thermo-mechanics of rubberlike materials. Phil Trans R Soc Lond A 276:371–403

  42. 42.

    Coleman BD, Gurtin ME (1967) Thermodynamics with internal variables. J Chem Phys 47:597–613

  43. 43.

    Haupt P (2000) On the dynamic behaviour of polymers under finite strains: constitutive modelling and identification of parameters. Int J Solids Struct 37:3633–3646

  44. 44.

    Haupt P, Lion A (2001) A generalisation of the Mooney–Rivlin model to finite linear viscoelasticity. In: Besdo D, Schuster RH, Ihlemann J (eds) Constitutive models for rubber. Swets & Zeitlinger, London, pp 57–64

  45. 45.

    Haupt P, Lion A (2002) On finite linear viscoelasticity of incompressible isotropic materials. Acta Mech 159:87–124

  46. 46.

    Lion A (1997) On the large deformation behaviour of reinforced rubber at different temperatures. J Mech Phys Solids 45:1805–1834

  47. 47.

    Reese S, Govindjee S (1998) Theoretical and numerical aspects in the thermo-viscoelastic material behaviour of rubber-like polymers. Mech Time-Depend Mater 1:357–396

  48. 48.

    Reese S, Govindjee S (1998) A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct 35:3455–3482

  49. 49.

    Reese S, Wriggers P (1997) A material model for rubber-like polymers exhibiting plastic deformation, computational aspects and a comparison with experimental results. Comput Methods Appl Mech Eng 148:279–298

  50. 50.

    Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11:582–592

  51. 51.

    Rivlin RS (1948) Large elastic deformation of isotropic materials IV: further developments of the general theory. Phil Trans R Soc Lond A A241:379–397

  52. 52.

    Scheday G (2003) Theorie und numerik der parameteridentifikation von materialmodellen der finiten elastizität und inelastizität auf der grundlage optischer feldmessmethoden. Dissertation, Bericht-Nr. I-11 des Instituts für Mechanik, Lehrstuhl I, Universität Stuttgart

  53. 53.

    Schwefel HP (1995) Evolution and optimum seeking. Wiley, New York

  54. 54.

    Avril S, Bonnet M, Bretelle A (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Exp Mech 48:381–402

  55. 55.

    Rechenberg I (1994) Evolutionsstrategie ’94. Frommann-Holzboog, Stuttgart

Download references

Acknowledgements

The authors gratefully acknowledge the funding by the German Science Foundation (DFG) under the grant DI 930/9-1

Author information

Correspondence to N. Koprowski-Theiß.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koprowski-Theiß, N., Johlitz, M. & Diebels, S. Modelling of a Cellular Rubber with Nonlinear Viscosity Functions. Exp Mech 51, 749–765 (2011). https://doi.org/10.1007/s11340-010-9376-9

Download citation

Keywords

  • Cellular rubber
  • Finite viscoelasticity
  • Thixotropy
  • Compressibility