Advertisement

Experimental Mechanics

, Volume 50, Issue 4, pp 491–499 | Cite as

High Temperature Nanoindentation of PMR-15 Polyimide

  • Y. C. LuEmail author
  • D. C. Jones
  • G. P. Tandon
  • S. Putthanarat
  • G. A. Schoeppner
Article

Abstract

This paper presents the high temperature nanoindentation experiments performed on an aerospace polymer resin–PMR-15 polyimide. The sharp-tipped Berkovich nanoindenter equipped with a hot-stage heating system was used. The indentation experiments were performed using the “hold-at-the-peak” method at various indenter holding times and unloading rates. The creep effect was seen to decrease with increasing holding time and/or unloading rate. Procedures used to minimize the creep effect are investigated at both ambient and elevated temperatures so that the correct contact depth (together with modulus and hardness) can be determined from nanoindentation load-depth curve. The temperature dependent mechanical properties of PMR-15 are measured through the current nanoindenter and results are consistent with those obtained from macroscopic tests.

Keywords

Nanoindentation High temperature PMR-15 polyimide Viscoelastic creep 

Notes

Acknowledgements

This work was partially supported by the American Society of Engineering Education–Summer Faculty Fellowship Program (SFFP) and performed under the direction of Dr. Greg A Schoeppner of Air Force Research Laboratory (AFRL), WPAFB.

References

  1. 1.
    Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564. doi: 10.1557/JMR.1992.1564 CrossRefGoogle Scholar
  2. 2.
    Oliver WC, Hutchings R, Pethica JB (1986) In: Blau BJ, Lawn BR (Eds) Microindentation Techniques in Materials Science and Engineering, ASTM 889 47Google Scholar
  3. 3.
    Pharr GM, Harding DS, Oliver WC (1994) Measurement of fracture toughness in thin films and small volumes using nanoindentation methods, materials research society symposiumGoogle Scholar
  4. 4.
    Pharr GM, Oliver WC, Brotzen FR (1992) On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J Mater Res 7:613–617. doi: 10.1557/JMR.1992.0613 CrossRefGoogle Scholar
  5. 5.
    Doerner MF, Nix WD (1986) A method for interpreting the data from depth-sensing indentation instruments. J Mater Res 4:601–609. doi: 10.1557/JMR.1986.0601 CrossRefGoogle Scholar
  6. 6.
    Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19:3–20. doi: 10.1557/jmr.2004.19.1.3 CrossRefGoogle Scholar
  7. 7.
    Lu YC, Shinozaki DM (1998) Deep penetration micro-indentation testing of high density polyethylene. Mater Sci Eng A 249:134–144. doi: 10.1016/S0921-5093(98)00571-1 CrossRefGoogle Scholar
  8. 8.
    Huang G, Wang B, Lu H (2004) Measurements of viscoelastic functions of polymers in the frequency domain by nanoindentation. Mech Time-Depend Mater 8:345–364. doi: 10.1007/s11043-004-0440-7 CrossRefGoogle Scholar
  9. 9.
    Odgeard GM, Bandorawalla T, Herring HM, Gates TS (2002) Characterization of viscoelastic properties of polymeric materials through nanoindentation, Experimental MechanicsGoogle Scholar
  10. 10.
    Lu H, Wang B, Ma J, Huang G, Viswanathan H (2003) Measurement of creep compliance of solid polymers by nanoindentation. Mech Time-Depend Mater 7:189–207. doi: 10.1023/B:MTDM.0000007217.07156.9b CrossRefGoogle Scholar
  11. 11.
    Beake BD, Smith JF (2002) High-temperature nanoindentation testing of fused silica and other materials. Philos Mag A 82:2179Google Scholar
  12. 12.
    Schuh CA, Packard CE, Lund AC (2006) Nanoindentation and contact-mode imaging at high temperatures. J Mater Res 21:725–736. doi: 10.1557/jmr.2006.0080 CrossRefGoogle Scholar
  13. 13.
    Volinsky AA, Moody NR, Gerberich WW (2004) Nanoindentation of Au and Pt/Cu thin films at elevated temperatures. J Mater Res 19(9):2650–2657. doi: 10.1557/JMR.2004.0331 CrossRefGoogle Scholar
  14. 14.
    Sawant A, Tin S (2008) High temperature nanoindnetation of a Re-bearing single crystal Ni-base superalloy. Scr Mater 58:275–278. doi: 10.1016/j.scriptamat.2007.10.013 CrossRefGoogle Scholar
  15. 15.
    Schoeppner, GA, Tandon GP, Pochiraju KV (2008) Predicting thermo-oxidative degradation and performance of high temperature polymer matrix composites. in Multiscale Modeling and Simulation of Composite Materials and Structures, Kwon Y, Allen D, Talreja R (Eds), ISBN: 978-0-387-36318-9, Springer Verlag.Google Scholar
  16. 16.
    Putthanarat S, Tandon GP, Schoeppner GA (2008) Influence of aging temperature, time, and environment on thermo-oxidative behavior of PMR-15: Nanomechanical characterization. J Mater Sci 43:6714–6723. doi: 10.1007/s10853-008-2800-1 CrossRefGoogle Scholar
  17. 17.
    Meador MAB, Lowell CE, Cavano PJ, Herrera-Fierro P (1996) On the oxidative degradation of nadic endcapped polyimides: I. effect of thermocycling on weight loss and crack formation. High Perform Polym 8:363–379. doi: 10.1088/0954-0083/8/3/003 CrossRefGoogle Scholar
  18. 18.
    Data Sheet Cytec Engineered Materials.http://www.cytec.com/engineered-materials/products/Cycom2237.htm, Greenville Texas.
  19. 19.
    Ngan AHW, Tang B (2004) Viscoelastic effects during unloading in depth-sensing indentation. J Mater Res 17(10):2604–2610. doi: 10.1557/JMR.2002.0377 CrossRefGoogle Scholar
  20. 20.
    Briscoe BJ, Fiori L, Pelillo E (1998) Nano-indentation of polymeric surfaces. J Phys, D, Appl Phys 31:2395–2405. doi: 10.1088/0022-3727/31/19/006 CrossRefGoogle Scholar
  21. 21.
    Cheng YT, Cheng CM (2005) Relationships between initial unloading slope, contact depth, and mechanical properties for conical indentation in linear viscoelastic solids. J Mater Res 20(4):1046–1052. doi: 10.1557/JMR.2005.0141 CrossRefGoogle Scholar
  22. 22.
    Geng K, Yang F, Grulke EA (2008) Nanoindentation of submicron polymeric coating system. Mater Sci Eng A 479:157–163. doi: 10.1016/j.msea.2007.06.042 CrossRefGoogle Scholar
  23. 23.
    Mayo MJ, Siegel RW, Liao YX, Nix WD (1992) Nanoindentation of nanocrystalline ZnO. J Mater Res 7:973–979. doi: 10.1557/JMR.1992.0973 CrossRefGoogle Scholar
  24. 24.
    Cheng Y-T, Cheng C-M (2001) Scaling relationships in indentation of power-law creep solids using self-similar indenters. Philos Mag Lett 81:9–16. doi: 10.1080/09500830010008457 CrossRefGoogle Scholar
  25. 25.
    Putthanarat S, Tandon GP, Schoeppner GA (2007) Influence of polishing time on thermal-oxidation characterization of isothermoally aged PMR-15 resin. Polym Degrad Stab 92:2110–2120. doi: 10.1016/j.polymdegradstab.2007.07.007 CrossRefGoogle Scholar
  26. 26.
    Johnson LL, Eby RK, Meador MAB (2003) Investigation of oxidation profile in PMR-15 polyimide using atomic force microscope (AFM). Polymer 44:187. doi: 10.1016/S0032-3861(02)00726-7 CrossRefGoogle Scholar
  27. 27.
    Young RJ, Lovell PA (1991) Introduction to Polymers, 2nd edn. CRC, New YorkGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2009

Authors and Affiliations

  • Y. C. Lu
    • 1
    Email author
  • D. C. Jones
    • 1
  • G. P. Tandon
    • 2
    • 3
  • S. Putthanarat
    • 2
    • 3
  • G. A. Schoeppner
    • 2
  1. 1.University of KentuckyLexingtonUSA
  2. 2.Air Force Research Laboratory, Materials and Manufacturing DirectorateAFRL/RXBCDaytonUSA
  3. 3.University of Dayton Research InstituteDaytonUSA

Personalised recommendations