Experimental Mechanics

, Volume 50, Issue 1, pp 47–54

A Multi-step Method for In Situ Mechanical Characterization of 1-D Nanostructures Using a Novel Micromechanical Device



A novel micromechanical device was developed to convert the compressive force applied by a nanoindenter into pure tensile loading at the sample stages inside a scanning electron microscope or a transmission electron microscope, in order to mechanically deform a one-dimensional nanostructure, such as a nanotube or a nanowire. Force vs. displacement curves for samples with Young’s modulus above a threshold value can be obtained independently from readings of a quantitative high resolution nanoindenter with considerable accuracy, using a simple conversion relationship. However, in-depth finite element analysis revealed the existence of limitations for the device when testing samples with relatively low Young’s modulus, where forces applied on samples derived from nanoindenter readings using a predetermined force conversion factor will no longer be accurate. In this paper, we will demonstrate a multi-step method which can alleviate this problem and make the device capable of testing a wide range of samples with considerable accuracy.


Micromechanical device In situ Nanoindenter FEA 1D nanostructure 



Micro-electro-mechanical systems


Finite element analysis


Scanning electron microscope


Transmission electron microscope


Atomic force microscope




Silicon on insulator


  1. 1.
    Jing GY, Duan HL, Sun XM, Zhang ZS, Xu J, Li YD, Wang JX, Yu DP (2006) Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys Rev B Condens Matter Mater Phys 73235409:1–6Google Scholar
  2. 2.
    Wu B, Heidelberg A, Boland JJ (2005) Mechanical properties of ultrahigh-strength gold nanowires. Nature Mater 47:525–529. doi:10.1038/nmat1403 CrossRefGoogle Scholar
  3. 3.
    Wu B, Heidelberg A, Boland JJ, Sader JE, Sun XM, Li YD (2006) Microstructure-hardened silver nanowires. Nano Lett 63:468–472. doi:10.1021/nl052427f CrossRefGoogle Scholar
  4. 4.
    Ni H, Li XD, Gao HS (2006) Elastic modulus of amorphous SiO2 nanowires. Appl Phys Lett 88043108:1–3Google Scholar
  5. 5.
    Haque MA, Saif MTA (2004) Deformation mechanisms in free-standing nanoscale thin films: a quantitative in situ transmission electron microscope study. Proc Natl Acad Sci U S A 10117:6335–6340. doi:10.1073/pnas.0400066101 CrossRefGoogle Scholar
  6. 6.
    Boyce BL, Grazier JM, Buchheit TE, Shaw MJ (2007) Strength distributions in polycrystalline silicon MEMS. Journal of Microelectromechanical Systems 162:179–190. doi:10.1109/JMEMS.2007.892794 CrossRefGoogle Scholar
  7. 7.
    Naraghi M, Chasiotis L, Kahn H, Wen Y, Dzenis Y (2007) Novel method for mechanical characterization of polymeric nanofibers. Rev Sci Instrum 78085108:1–7Google Scholar
  8. 8.
    Zhu Y, Moldovan N, Espinosa HD (2005) A microelectromechanical load sensor for in situ electron and X-ray microscopy tensile testing of nanostructures. Appl Phys Lett 86013506:1–3Google Scholar
  9. 9.
    Muhlstein CL, Stach EA, Ritchie RO (2002) A reaction-layer mechanism for the delayed failure of micron-scale polycrystalline silicon structural films subjected to high-cycle fatigue loading. Acta Mater 50:3579–3595. doi:10.1016/S1359-6454(02)00158-1 CrossRefGoogle Scholar
  10. 10.
    Kahn H, Chen L, Ballarini R, Heuer AH (2006) Mechanical fatigue of polysilicon: effects of mean stress and stress amplitude. Acta Mater 54:667–678. doi:10.1016/j.actamat.2005.10.007 CrossRefGoogle Scholar
  11. 11.
    Ganesan Y, Lu Y, Lu H, Lou J (2008) In situ mechanical characterization of one dimensional nanoscale building blocks using novel microfabricated devices. IEEE-Nano Conf. Proc 8:783–786Google Scholar
  12. 12.
    Durelli AJ, Morse S, Parks V (1962) The theta specimen for determining tensile strength of brittle materials. Mater Res Stand, ASTM 2:114–117Google Scholar
  13. 13.
    Quinn GD, Fuller E, Dan X, Jillavenkatesa A, Li M, Smith D, Beall J (2005) A novel test method for measuring mechanical properties at the small-scale: the theta specimen. Ceram Eng Sci Proc 262:117–126CrossRefGoogle Scholar
  14. 14.
    Guckel H, Burns D, Rutigliano C, Lovell E, Choi B (1992) Diagnostic microstructures for the measurement of intrinsic strain in thin films. J Micromech Microeng 2:86–95. doi:10.1088/0960-1317/2/2/004 CrossRefGoogle Scholar
  15. 15.
    Schneider D, Tucker MD (1996) Non-destructive characterization and evaluation of thin films by laser-induced ultrasonic surface waves. Thin Solid Films 290–291:305–311. doi:10.1016/S0040-6090(96)09029-3 CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2009

Authors and Affiliations

  1. 1.Department of Mechanical Engineering and Materials ScienceRice UniversityHoustonUSA

Personalised recommendations