Experimental Mechanics

, Volume 49, Issue 6, pp 841–854

A Procedure for Accurate One-Dimensional Strain Measurement Using the Grid Method

  • C. Badulescu
  • M. Grédiac
  • J. D. Mathias
  • D. Roux
Article

Abstract

This paper deals with the accurate calculation of strain using the grid method. The strain field is first directly deduced from the fringe pattern without calculating the displacement field. This procedure is validated with two numerical examples. Two types of experiment are then carried out: a translation and a tensile test. It is observed that some additional fictitious strains appear in both cases. They are due to two main reasons which interact with each other: the grid defects and the displacement of the grid lines during testing. A suitable procedure is proposed to cancel out these fictitious strains. This procedure is successfully applied in two cases of fringe patterns.

Keywords

Fringe Full-field measurement Grid method Phase Strain 

References

  1. 1.
    Patterson E, Brailly P, Burgete R, Hack E, Siebert T, Whelan M (2007) A challenge for high performance full-strain measurement system. Strain 43(3):167–180CrossRefGoogle Scholar
  2. 2.
    Kim JH, Pierron F, Wisnom MR, Syed-Muhamad K (2007) Identification of the local stiffness reduction of a damaged composite plate using the virtual fields method. Composites Part A 38(9):2065–2075CrossRefGoogle Scholar
  3. 3.
    Hamam R, Hild F, Roux S (2007) Stress intensity factor gauging by digital image correlation: application in cyclic loading. Strain 43(3):181–192CrossRefGoogle Scholar
  4. 4.
    Tabourot L, Vacher P, Coudert T, Toussaint T, Arrieux R (2005) Numerical determination of strain localization during finite element simulation of deep-drawing operations. J Mater Process Technol 159(2):152–158CrossRefGoogle Scholar
  5. 5.
    Kobayashi A (1993) Handbook on experimental mechanics. Wiley, New YorkGoogle Scholar
  6. 6.
    Surrel Y (1994) Moiré and grid methods in optics: a signal-processing approach. Proceedings of the SPIE 2342:213–220Google Scholar
  7. 7.
    Cordero RR, Molimard J, Labbé F, Matinez A (2008) Strain maps obtained by phase-shifting interferometry: an uncerntainty analysis. Optics Commun 281:2195–2206CrossRefGoogle Scholar
  8. 8.
    Avril S, Feissel P, Pierron F, Villon P (2008) Estimation of the strain field from full-field displacement noisy data. Eur J Comput Mech 17(5–7):857–868MATHGoogle Scholar
  9. 9.
    Sciammarella CA, Narayanan R (1984) The determination of the componentss of the strain tensor in holographic interferometry. Exp Mech 24(5):257–264CrossRefGoogle Scholar
  10. 10.
    Dupré JC, Brémand F, Lagarde A (1993) Numerical spectral analysis of a grid: application to strain measurements. Opt Lasers Eng 18(3):159–172CrossRefGoogle Scholar
  11. 11.
    Sciammarella CA, Kim T (2005) Frequency modulation interpretation of fringes and computation of strains. Exp Mech 45(5):393–403CrossRefGoogle Scholar
  12. 12.
    Schroeter BM, McDowell DL (2003) Measurement of deformation fields in polycrystalline ofhc copper. Int J Plast 19:1355–1376MATHCrossRefGoogle Scholar
  13. 13.
    Moulart R, Rotinat R, Pierron F, Lerondel G (2007) On the realization of microscopic grids for local strain measurement by direct interferometric photolithography. Opt Lasers Eng 45(12):1131–1147CrossRefGoogle Scholar
  14. 14.
    Piro JL, Grédiac M (2004) Producing and transferring low-spatial-frequency grids for measuring displacement fields with moiré and grid methods. Exp Tech 28(4):23–26CrossRefGoogle Scholar
  15. 15.
    Sciammarella CA, Kim T (2003) Determination of strains from fringe patterns using space-frequency representation. Optic Eng 42(11):3182–3193CrossRefGoogle Scholar
  16. 16.
    Surrel Y (2000) Fringe analysis, chapter photomechanics, Topics Appl Phys 77:55–102CrossRefGoogle Scholar
  17. 17.
    Papoulis A (1962) The Fourier integral and its applications. McGraw-Hill. New YorkMATHGoogle Scholar
  18. 18.
    Mallat S (1999) A wavelet tour of signal processing. Academic, LondonMATHGoogle Scholar
  19. 19.
    Cherbuliez M, Jacquot P, Colonna de Lega X (1999) Wavelet processing of interferometric signals and fringe patterns. In SPIE, editor, SPIE conference on wavelet applications in signal and image processing VII, vol. 3813, pp. 692–702Google Scholar
  20. 20.
    Kadooka K, Kunoo K, Uda N, Ono K, Nagayasu T (2003) Strain analysis for moiré interferometry using the two-dimensional continuous wavelet transform. Exp Mech 43:45–51CrossRefGoogle Scholar
  21. 21.
    Zhong J, Weng J (2005) Phase retrieval of optical fringe pattern from the ridge of a wavelet transform. Optic Lett 19:2560–2562CrossRefGoogle Scholar
  22. 22.
    Quan C, Fu Y, Tay CJ, Tan JM (2005) Profiling of objects with height steps by wavelet analysis of shadow moiré fringes. Appl Optic 44(15):3284–3290CrossRefGoogle Scholar
  23. 23.
    Lui H, Cartwright AN, Basaran C (2004) Moiré interferogram phase extraction: a ridge detection algorithm for continuous wavelet transform. Appl Optic 43(4):850–856CrossRefGoogle Scholar
  24. 24.
    Fu Y, Tay CJ, Quan C, Chen LJ (2004) Temporal wavelet analysis for deformation and velocity measurement in speckle interferometry. Optic Eng 43(11):2780–2787CrossRefGoogle Scholar
  25. 25.
    Huntley JM (1989) Noise-immune phase unwrapping algorithm. Appl Optic 28(16):2780–2787CrossRefGoogle Scholar
  26. 26.
    Bornert M, Brémand F, Doumalin P, Dupré JC, Fazzini M, Grédiac M, Hild F, Mistou S, Molimard J, Orteu JJ, Robert L, Surrel Y, Vacher P, Wattrisse B (2008) Assessment of digital image correlation measurement errors: methodology and results. Exp Mech (in press)Google Scholar
  27. 27.
    Haddadi H, Belhabib S (2008) Use of rigid-body motion for the investigation and estimation of the measurement errors related to digital image correlation technique. Opt Lasers Eng 46(2):185–196CrossRefGoogle Scholar
  28. 28.
    Kaiser G, Schneider W (2008) Estimation of sensor point spread function by spatial subpixel analysis. Int J Remote Sensing 29(7–8):2137–2155CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2008

Authors and Affiliations

  • C. Badulescu
    • 1
  • M. Grédiac
    • 1
  • J. D. Mathias
    • 2
  • D. Roux
    • 3
  1. 1.Laboratoire de Mécanique et IngénieriesInstitut Français de Mécanique Avancée-Université Blaise Pascal Clermont IIAubière CedexFrance
  2. 2.Laboratoire d’Ingénierie pour les Systèmes ComplexesCEMAGREFAubière CedexFrance
  3. 3.Laboratoire de MathématiquesUniversité Blaise Pascal Clermont IIAubière CedexFrance

Personalised recommendations