Experimental Mechanics

, 48:381 | Cite as

Overview of Identification Methods of Mechanical Parameters Based on Full-field Measurements

  • Stéphane Avril
  • Marc Bonnet
  • Anne-Sophie Bretelle
  • Michel Grédiac
  • François Hild
  • Patrick Ienny
  • Félix Latourte
  • Didier Lemosse
  • Stéphane Pagano
  • Emmanuel Pagnacco
  • Fabrice Pierron
Article

Abstract

This article reviews recently developed methods for constitutive parameter identification based on kinematic full-field measurements, namely the finite element model updating method (FEMU), the constitutive equation gap method (CEGM), the virtual fields method (VFM), the equilibrium gap method (EGM) and the reciprocity gap method (RGM). Their formulation and underlying principles are presented and discussed. These identification techniques are then applied to full-field experimental data obtained on four different experiments, namely (i) a tensile test, (ii) the Brazilian test, (iii) a shear-flexural test, and (iv) a biaxial test. Test (iv) features a non-uniform damage field, and hence non-uniform equivalent elastic properties, while tests (i), (ii) and (iii) deal with the identification of uniform anisotropic elastic properties. Tests (ii), (iii) and (iv) involve non-uniform strain fields in the region of interest.

Keywords

Kinematic field measurements Identification Finite elements Digital image correlation Inverse problem 

References

  1. 1.
    Andrieux S, Ben Abda A, Bui HD (1997) Sur l’identification de fissures planes via le concept d’écart à la réciprocité en élasticité. C R Acad Sci Paris Ser II 324:1431–1438MATHMathSciNetGoogle Scholar
  2. 2.
    Arafeh MH (1995) Identification de la loi de comportement élastique de matériaux orthotropes. Ph.D. thesis, Université de Technologie de CompiègneGoogle Scholar
  3. 3.
    Arafeh M-H, Knopf-Lenoir C, Rouger F (1995) Conception optimale d’essais de flexion de plaques orthotropes et identification. C R Acad Sci II/321:351–354Google Scholar
  4. 4.
    Avril S, Grédiac M, Pierron F (2004) Sensitivity of the virtual fields method to noisy data. Comput Mech 34:439–452MATHCrossRefGoogle Scholar
  5. 5.
    Avril S, Pierron F (2007) General framework for the identification of constitutive parameters from full-field measurements in linear elasticity. Int J Solids Struct 44:4978–5002CrossRefMATHGoogle Scholar
  6. 6.
    Avril S, Pierron F, Pannier Y, Rotinat R (2008) Stress reconstruction and constitutive parameter identification in plane-stress elastoplastic problems using surface measurements of deformation fields. Experimental Mechanics. doi:10.1007/s11340-007-9084-2
  7. 7.
    Ben Abda A, Ben Ameur H, Jaoua M (1999) Identification of 2D cracks by boundary elastic measurements. Inverse Problems 15:67–77MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bonnet M (1999) Boundary integral equations methods for solids and fluids. Wiley, New YorkGoogle Scholar
  9. 9.
    Bonnet M, Constantinescu A (2005) Inverse problems in elasticity. Inverse Probl 21:R1–R50 (topical review article)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Bui HD (1995) Sur quelques problèmes inverses élastiques en mécanique de l’endommagement. In: Deuxième colloque national de calcul des structures. Hermès, Lyon, pp 26–35Google Scholar
  11. 11.
    Bui HD, Constantinescu A, Maigre H (2004) Numerical identification of linear cracks in 2D elastodynamics using the instantaneous reciprocity gap. Inverse Probl 20:993–1001MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Burczyński T (2003) Evolutionary computation in mechanics. IACM Expressions, Bull Int Assoc Comp MechGoogle Scholar
  13. 13.
    Calderon AP (1980) On an inverse boundary value problem. In: Seminar on numerical analysis and its applications to continuum physics. Soc. Brasilian de Matematica, Rio de Janeiro, pp 65–73Google Scholar
  14. 14.
    Calloch S, Dureisseix D, Hild F (2002) Identification de modèles de comportement de matériaux solides: utilisation d’essais et de calculs. Technol Form 100:36–41Google Scholar
  15. 15.
    Chalal H, Avril S, Pierron F, Meraghni F (2006) Experimental identification of a damage model for composites using the grid technique coupled to the virtual fields method. Compos Part A 37:315–325CrossRefGoogle Scholar
  16. 16.
    Chrysochoos A, Berthel B, Latourte F, Galtier A, Pagano S, Wattrisse B (2008) Energy analysis of HCF fatigue using DIC and IRT. The Journal of Strain Analysis for Engineering Design (in press)Google Scholar
  17. 17.
    Claire D, Hild F, Roux S (2004) A finite element formulation to identify damage fields. Int J Numer Methods Eng 61:189–208MATHCrossRefGoogle Scholar
  18. 18.
    Collin F, Berthaud Y, Hild F (1998) Visualisation par analyse d’images de la répartition des déformations et de l’amorçage dans un matériau composite. In: Berthaud Y, Cottron M, Dupré F, Morestin M, Moucheront P, Taroni M (eds) Photomécanique 1998. GAMAC, pp 241–248Google Scholar
  19. 19.
    Collins JC, Hart GC, Kennedy B (1974) Statistical identification of structures. AIAA J 12:185–190MATHCrossRefGoogle Scholar
  20. 20.
    Constantinescu A (1995) On the identification of elastic moduli from displacement-force boundary measurements. Inverse Probl Eng 1:293–315CrossRefGoogle Scholar
  21. 21.
    Cottin N, Felgenhauer HP, Natke HG (1984) On the parameter identification of elastomechanical systems using input and ouput residuals. Ing-Arch 54:378–387MATHCrossRefGoogle Scholar
  22. 22.
    Cugnoni J, Gmur T, Schorderet A (2007) Inverse method based on modal analysis for characterizing the constitutive properties of thick composite plates. Comput Struct 85:1310–1320CrossRefGoogle Scholar
  23. 23.
    Furgiuele FM, Muzzupappa M, Pagnotta L (1997) A full-field procedure for evaluating the elastic properties of advanced ceramics. Exp Mech 37:285–291CrossRefGoogle Scholar
  24. 24.
    Genovese K, Lamberti L, Pappalettere C (2006) Mechanical characterization of hyperelastic materials with fringe projection and optimization techniques. Opt Lasers Eng 44:423–442CrossRefGoogle Scholar
  25. 25.
    Geymonat G, Hild F, Pagano S (2002) Identification of elastic parameters by displacement field measurement. C R Acad Sci Paris Ser II 330:403–408MATHGoogle Scholar
  26. 26.
    Geymonat G, Pagano S (2003) Identification of mechanical properties by displacement field measurement: a variational approach. Meccanica 38:535–545MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Giraudeau A, Pierron F (2003) Simultaneous identification of stiffness and damping properties of isotropic materials from forced vibrating plates. C R Méc 331:259–264MATHGoogle Scholar
  28. 28.
    Giton M, Caro-Bretelle AS, Ienny P (2006) Hyper-elastic behaviour identification by a forward problem resolution: application to a tear test of a silicone-rubber. Strain 42:291–297CrossRefGoogle Scholar
  29. 29.
    Grédiac M (1989) Principe des travaux virtuels et identification. C R Acad Sci II/309:1–5MATHGoogle Scholar
  30. 30.
    Grédiac M, Fournier N, Paris P-A, Surrel Y (1998) Direct identification of elastic constants of anisotropic plates by modal analysis: experiments and results. J Sound Vib 210:645–659CrossRefGoogle Scholar
  31. 31.
    Grédiac M, Pierron F (1998) A T-shaped specimen for the direct characterization of orthotropic materials. Int J Numer Methods Eng 41:293–309MATHCrossRefGoogle Scholar
  32. 32.
    Grédiac M, Pierron F (2006) Applying the virtual fields method to the identification of elasto-plastic constitutive parameters. Int J Plast 22:602–627MATHCrossRefGoogle Scholar
  33. 33.
    Grédiac M, Pierron F, Surrel Y (1999) Novel procedure for complete in-plane composite characterization using a T-shaped specimen. Exp Mech 39:142–149CrossRefGoogle Scholar
  34. 34.
    Grédiac M, Toussaint E, Pierron F (2002) Special virtual fields for the direct determination of material parameters with the virtual fields method. 2-application to in-plane properties. Int J Solids Struct 39:2707–2730MATHCrossRefGoogle Scholar
  35. 35.
    Grédiac M, Toussaint E, Pierron F (2003) Special virtual fields for the direct determination of material parameters with the virtual fields method. 3-application to the bending rigidities of anisotropic plates. Int J Solids Struct 40:2401–2419MATHCrossRefGoogle Scholar
  36. 36.
    Grédiac M, Vautrin A (1990) A new method for determination of bending rigidities of thin anisotropic plates. J Appl Mech 57:964–968CrossRefGoogle Scholar
  37. 37.
    Grédiac M, Vautrin A (1993) Mechanical characterization of anisotropic plates: experiments and results. Eur J Mech A Solids 12:819–838Google Scholar
  38. 38.
    Hadj-Sassi K, Andrieux S (2007) Une nouvelle fonctionnelle d’énergie incrémentale totale pour le contrle des parties réversibles et dissipatives des matériaux standards. In: Actes du Huitième Colloque National en Calcul des Structures. Hermes, Lyon, pp 255–261Google Scholar
  39. 39.
    Hemez FM, Farhat C (1993) Updating finite element dynamic models using element-by-element sensitivity methodology. AIAA J 32:1702–1711Google Scholar
  40. 40.
    Hild F (1992) Dispositif de traction-compression d’une éprouvette. E.N.S. Cachan/Renault, French patent nr. 90 06848 (Bulletin Officiel de la propriété industrielle, 92/33, publication nbr. 2 662 801)Google Scholar
  41. 41.
    Hild F (2002) CORRELILMT: a software for displacement field measurements by digital image correlation. LMT-Cachan, internal report 254Google Scholar
  42. 42.
    Hild F, Amar E, Marquis D (1992) Stress heterogeneity effect on the strength of silicon nitride. J Am Ceram Soc 75:700–702CrossRefGoogle Scholar
  43. 43.
    Hild F, Périé J-N, Coret M (1999) Mesure de champs de déplacements 2D par intercorrélation d’images : CORRELILMT. LMT-Cachan, internal report 230Google Scholar
  44. 44.
    Hild F, Raka B, Baudequin M, Roux S, Cantelaube F (2002) Multi-scale displacement field measurements of compressed mineral wool samples by digital image correlation. Appl Opt Inf Process 41:6815–6828Google Scholar
  45. 45.
    Hild F, Roux S (2006) Digital image correlation: from measurement to identification of elastic properties—a review. Strain 42:69–80CrossRefGoogle Scholar
  46. 46.
    Hoc T, Gélébart L, Crépin J, Zaoui A (2003) A procedure for identifying the plastic behaviour of single crystals from the local response of polycrystals. Acta Mater 51:5479–5490CrossRefGoogle Scholar
  47. 47.
    Ikehata M (1990) Inversion formulas for the linearized problem for an inverse boundary value problem in elastic prospection. SIAM J Appl Math 50:1635–1644MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Ikehata M (1993) An inverse problem for the plate in the Love-Kirchhoff Theory. SIAM J Appl Math 53:942–970MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Iosipescu N (1967) New accurate procedure for single shear testing of metals. J Mater 2:537–566Google Scholar
  50. 50.
    Kajberg J, Lindkvist G (2004) Characterization of materials subjected to large strains by inverse modelling based on in-plane displacement fields. Int J Solids Struct 41:3439–3459MATHCrossRefGoogle Scholar
  51. 51.
    Kajberg J, Sundin KG, Melin LG, Ståhle P (2004) High strain rate tensile and viscoplastic parameter identification using micoscopic high-speed photography. Int J Plast 20:561–575MATHCrossRefGoogle Scholar
  52. 52.
    Kavanagh KT, Clough RW (1971) Finite element applications in the characterization of elastic solids. Int J Solids Struct 7:11–23MATHCrossRefGoogle Scholar
  53. 53.
    Ladevèze P, Nedjar B, Reynier M (1994) Updating of finite element models using vibration tests. AIAA 32:1485–1491MATHCrossRefGoogle Scholar
  54. 54.
    Ladevèze P, Reynier M (1989) A localization method of stiffness errors for the adjustement of F.E. models. In: Proceedings F.E. modeling and analysis in vibrations analysis techniques and applications. ASME, New York, pp 355–361Google Scholar
  55. 55.
    Latourte F, Chrysochoos A, Pagano S, Wattrisse B (2008) Elastoplastic behavior identification for heterogeneous loadings and materials. Exp Mech (in press)Google Scholar
  56. 56.
    Lecompte D, Sol H, Vantomme J, Habraken AM (2005) Identification of elastic orthotropic material parameters based on ESPI measurements. In: SEM annual conference and exposition on experimental and applied mechanics, Portland, 7–9 June 2005Google Scholar
  57. 57.
    Lecompte D, Sol H, Vantomme J, Habraken AM (2007) Mixed numerical-experimental technique for orthotropic parameter identification using biaxial tensile tests on cruciform specimens. Int J Solids Struct 44:1643–1656CrossRefGoogle Scholar
  58. 58.
    Lemaître J, Chaboche JL (1990) Mechanics of solid materials. Cambridge University Press, CambridgeMATHGoogle Scholar
  59. 59.
    Lobo Carneiro FC (1943) Um novo método para determinacão da resistência à tração dos concretos. In: Proceedings Anais 5a Reunião da Associação Brasileira de Normas Técnicas (ABNT) em São Paulo, pp 127–129Google Scholar
  60. 60.
    Lobo Carneiro FC (1953) Une nouvelle méthode pour la détermination de la résistance à la traction des bétons. Bull RILEM 13:103–108Google Scholar
  61. 61.
    Magorou LL, Bos F, Rouger F (2002) Identification of constitutive laws for wood-based panels by means of an inverse method. Compos Sci Technol 62:591–596CrossRefGoogle Scholar
  62. 62.
    Mahnken R (2004) A comprehensive study of a multiplicative elastoplasticity model coupled to damage to include parameter identification. Comput Struct 74:179–200CrossRefGoogle Scholar
  63. 63.
    Mauvoisin G, Bremand FJ, Lagarde A (1994) Three-dimensional shape reconstruction by phase-shifting shadow moire. Appl Opt 33:2163–2169Google Scholar
  64. 64.
    Meijer R, Douven LFA, Oomens CWJ (1997) Characterisation of anisotropic and non-linear behaviour of human skin in-vivo. Comput Methods Biomech Biomed Eng 1:13–27Google Scholar
  65. 65.
    Meuwissen M (1998) An inverse method for the mechanical characterization of metals. Ph.D. thesis, Eindhoven University of TechnologyGoogle Scholar
  66. 66.
    Meuwissen MHH, Oomens CWJ, Baaijens FPT, Petterson R, Janssen JD (1998) Determination of the elasto-plastic properties of aluminium using a mixed numerical-experimental method. J Mater Process Technol 75:204–211CrossRefGoogle Scholar
  67. 67.
    Moës N, Ladevèze P, Douchin B (1999) Constitutive relation error estimators for (visco) plastic finite element analysis with softening. Comput Methods Appl Mech Eng 176:247–264MATHCrossRefGoogle Scholar
  68. 68.
    Molimard J, Le Riche R, Vautrin A, Lee JR (2005) Identification of the four orthotropic plate stiffnesses using a single open-hole tensile test. Exp Mech 45:404–411CrossRefGoogle Scholar
  69. 69.
    Moreau A, Pagnacco E, Borza D, Lemosse D (2006) An evaluation of different mixed experimental/numerical procedures using FRF for the identification of viscoelastic materials. In: International conference on noise and vibration engineering, ISMA 2006, Leuven, 18–20 September 2006Google Scholar
  70. 70.
    Nguyen HM, Allix O, Feissel P (2006) Application of the CRE for parameter identification in nonlinear dynamics with corrupted measurements. Seventh World Congress on Computational Mechanics, Los Angeles, July 2006Google Scholar
  71. 71.
    Oomens CWJ, van Ratingen MR, Janssen JD, Kok JJ, Hendriks MAN (1993) A numerical-experimental method for a mechanical characterization of biological materials. J Biomech 26:617–621CrossRefGoogle Scholar
  72. 72.
    Padmanabhan S, Hubner JP, Kumar AV, Ifju PG (2006) Load and boundary condition calibration using full-field measurement. Exp Mech 46:569–578CrossRefGoogle Scholar
  73. 73.
    Pagnacco E, Lemosse D (2006) A coupled FE based inverse strategy from displacement field measurement subject to an unknown distribution of forces. In: Photomechanics 2006, Clermont-Ferrand, 10–12 July 2006Google Scholar
  74. 74.
    Pagnacco E, Lemosse D, Hild F, Amiot F (2005) Inverse strategy from displacement field measurement and distributed forces using FEA. In: 2005 SEM annual conference and exposition on experimental and applied mechanics, Portland, 7–9 June 2005Google Scholar
  75. 75.
    Pagnacco E, Moreau A, Lemosse D (2007) Inverse strategies for the identification of elastic and viscoelastic material paremeters using full-field measurements. Mater Sci Eng A 452–453:737–745CrossRefGoogle Scholar
  76. 76.
    Perié JN, Calloch S, Cluzel C, Hild F (2002) Analysis of a multiaxial test on a C/C composite by using digital image correlation and a damage model. Exp Mech 42: 318–328CrossRefGoogle Scholar
  77. 77.
    Pierron F, Grédiac M (2000) Identification of the through-thickness moduli of thick composites from whole-field measurements using the Iosipescu fixture: theory and simulations. Compos Part A 31:309–318CrossRefGoogle Scholar
  78. 78.
    Rastogi PK (1999) Photomechanics. Springer, BerlinGoogle Scholar
  79. 79.
    Renaud P (2000) Comportement d’un matériau composite carbone/carbone 3D sous chargement uniaxial. Master’s thesis, ENS CachanGoogle Scholar
  80. 80.
    Surrel Y (2004) Les techniques optiques de mesure de champ: essai de classification. Instrum Mes Metro 4:11–42Google Scholar
  81. 81.
    Tarantola A (1987) Inverse problem theory. Elsevier, AmsterdamMATHGoogle Scholar
  82. 82.
    Thomas JW (1999) Numerical partial differential equations: conservation laws and elliptic equations. Springer, BerlinMATHGoogle Scholar
  83. 83.
    Toussaint E, Grédiac M, Pierron F (2006) The virtual fields method with piecewise virtual fields. Int J Mech Sci 48:256–264CrossRefGoogle Scholar
  84. 84.
    van Ratingen MR (1994) Mechanical identification of inhomogeneous solids: a mixed numerical experimental approach. Ph.D. thesis, Eindhoven University of TechnologyGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2008

Authors and Affiliations

  • Stéphane Avril
    • 1
  • Marc Bonnet
    • 2
  • Anne-Sophie Bretelle
    • 3
  • Michel Grédiac
    • 4
  • François Hild
    • 5
  • Patrick Ienny
    • 3
  • Félix Latourte
    • 6
  • Didier Lemosse
    • 7
  • Stéphane Pagano
    • 6
  • Emmanuel Pagnacco
    • 7
  • Fabrice Pierron
    • 1
  1. 1.LMPFENSAMChalons en ChampagneFrance
  2. 2.Laboratoire de Mécanique des SolidesEcole PolytechniqueF-Palaiseau cedexFrance
  3. 3.CMGDEcole des Mines d’AlèsAlèsFrance
  4. 4.LAMIUniversité Blaise PascalClermont-FerrandFrance
  5. 5.LMTENS CachanCachanFrance
  6. 6.LMGCUniversité Montpelier IIMontpellierFrance
  7. 7.LMRINSA RouenRouenFrance

Personalised recommendations