Experimental Mechanics

, Volume 48, Issue 4, pp 451–464 | Cite as

Identification of Heterogeneous Constitutive Parameters in a Welded Specimen: Uniform Stress and Virtual Fields Methods for Material Property Estimation

  • M. A. SuttonEmail author
  • J. H. Yan
  • S. Avril
  • F. Pierron
  • S. M. Adeeb


Local strain data obtained throughout the entire weld region encompassing both the weld nugget and heat affected zones (HAZs) are processed using two methodologies, uniform stress and virtual fields, to estimate specific heterogeneous material properties throughout the weld zone. Results indicate that (a) the heterogeneous stress–strain behavior obtained by using a relatively simple virtual fields model offers a theoretically sound approach for modeling stress–strain behavior in heterogeneous materials, (b) the local stress–strain results obtained using both a uniform stress assumption and a simplified uniaxial virtual fields model are in good agreement for strains ɛ xx < 0.025, (c) the weld nugget region has a higher hardening coefficient, higher initial yield stress and a higher hardening exponent, consistent with the fact that the steel weld is overmatched and (d) for ɛ xx > 0.025, strain localization occurs in the HAZ region of the specimen, resulting in necking and structural effects that complicate the extraction of local stress strain behavior using either of the relatively simple models.


Material parameter identification Heterogeneous weld zone Virtual fields method Computer vision Digital image correlation 



The authors gratefully acknowledge the support of (a) the Army Research Office and Dr. Bruce Lamattina through W911NF-06-1-0216, (b) Dr. Stephen Smith and NASA Langley under Grant NASA-NRA-NNX07AB46A and (c) General Motors and Dr. Pablo Zavattieri through both contractual support ND0144200 and an unrestricted gift 002259249. The technical assistance provided by Prof. Xiaomin Deng in the Department of Mechanical Engineering at the University of South Carolina and Dr. Hubert Schreier and Correlated Solutions Incorporated for supporting this effort through modifications to their software, VIC-2D, for our use is deeply appreciated.


  1. 1.
    Lockwood WD, Reynolds AP (2003) Simulation of the global response of a friction stir weld using local constitutive behavior. Mater Sci Eng A V3391–2:35–42.Google Scholar
  2. 2.
    Peters WH, Ranson WF (1981) Digital imaging techniques in experimental stress analysis. Opt Eng 213:427–432.Google Scholar
  3. 3.
    Sutton MA, Wolters WJ, Peters WH, Ranson WF, McNeill SR (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 13:133–139.CrossRefGoogle Scholar
  4. 4.
    Peters WH, He Z-H, Sutton MA, Ranson WF (1984) Two-dimensional fluid velocity measurements by use of digital speckle correlation techniques. Exp Mech 242:117–121.CrossRefGoogle Scholar
  5. 5.
    Anderson J, Peters WH, Sutton MA, Ranson WF, Chu TC (1984) Application of digital correlation methods to rigid body mechanics. Opt Eng 226:238–743.Google Scholar
  6. 6.
    Chu TC, Ranson WF, Sutton MA, Peters WH (1985) Applications of digital image correlation techniques to experimental mechanics. Exp Mech 253:232–245.CrossRefGoogle Scholar
  7. 7.
    Sutton MA, McNeill SR, Jang J, Babai M (1988) The effects of subpixel image restoration on digital correlation error estimates. Opt Eng 273:173–175.Google Scholar
  8. 8.
    Sutton MA, Cheng M, McNeill SR, Chao YJ, Peters WH (1988) Application of an optimized digital correlation method to planar deformation analysis. Image Vis Comput 43:143–150.CrossRefGoogle Scholar
  9. 9.
    Sutton MA, Bruck HA, McNeill SR (1989) Determination of deformations using digital correlation with the Newton–Raphson method for partial differential corrections. Exp Mech 293:261–267.CrossRefGoogle Scholar
  10. 10.
    Sutton MA, Bruck HA, Chae TL, Turner JL (1990) Development of a computer vision methodology for the analysis of surface deformations in magnified images. ASTM STP-1094; MICON-90. Advances in video technology for micro-structural evaluation of materials 109–134.Google Scholar
  11. 11.
    VIC2D, Correlated Solutions Incorporated, 120 Kaminer Way, Parkway Suite A, Columbia, SC 29210
  12. 12.
    Schreier H, Braasch J, Sutton MA (2000) On systematic errors in digital image correlation. Opt Eng 3911:2915–2921.CrossRefGoogle Scholar
  13. 13.
    Schreier HW, Sutton MA (2002) Effect of higher order displacement fields on digital image correlation displacement component estimates. Int J Exp Mech 423:303–311.CrossRefGoogle Scholar
  14. 14.
    Lagattu F, Brillaud J, Lafarie-Frenot MC (2004) High strain gradient measurements by using digital image correlation technique. Mater Charact 53:17–28.CrossRefGoogle Scholar
  15. 15.
    Lockwood WD, Tomaz B, Reynolds AP (2002) Mechanical response of friction stir welded AA2024: experiment and modeling. Mater Sci Eng A323:348–353.Google Scholar
  16. 16.
    Reynolds AP, Duvall F (1999) Welding J 7810:355s–360s.Google Scholar
  17. 17.
    Adeeb SM, Horsley D, Yan J-H, Sutton MA, Reynolds AP. Local stress–strain response of an axial x100 girth weld under tensile loading using digital image correlation. Proceedings of the 2006 International Pipeline Conference, September 25–29, Calgary, Alberta, Canada, IPC2006-10330.Google Scholar
  18. 18.
    Grédiac M (1989) Principe des travaux virtuels et identification. C R Acad Sci 309:1–5.zbMATHGoogle Scholar
  19. 19.
    Grédiac M, Toussaint E, Pierron F (2002) Special virtual fields for the direct identification of material parameters with the virtual fields method. 1- Principle and definition. Int J Solids Struct 3910:2691–2706.zbMATHCrossRefGoogle Scholar
  20. 20.
    Avril S, Pierron F (2007) General framework for the identification of constitutive parameters from full-field measurements in linear elasticity. Int J Solids Struct 44:4978. 5002.CrossRefGoogle Scholar
  21. 21.
    Grédiac M, Pierron F, Avril S, Toussaint E (2006) The virtual fields method for extracting constitutive parameters from full-field measurements: a review. Strain 42:233–253.CrossRefGoogle Scholar
  22. 22.
    Pannier Y, Avril S, Rotinat R, Pierron F (2006) Identification of elasto-plastic constitutive parameters from statically undetermined tests using the virtual fields method. Exp Mech 466:235–255.CrossRefGoogle Scholar
  23. 23.
    Grédiac M, Pierron F (2006) Applying the virtual field method to the identification of elasto-plastic constitutive parameters. Int J Plast 22:602–627.zbMATHCrossRefGoogle Scholar
  24. 24.
    Avril S, Pierron F, Yan J, Sutton MA (2007) Identification of viscoplastic parameters using DIC and the virtual fields method. Proceedings of the SEM Conference and Exposition, Springfield, USA.Google Scholar
  25. 25.
    Meuwissen MHH, Oomens CWJ, Baaijens FPT, Petterson R, Janssen JD (1998) Determination of the elasto-plastic properties of aluminium using a mixed numerical-experimental method. J Mater Process Technol 75:204–211.CrossRefGoogle Scholar
  26. 26.
    Kajberg J, Wikman B (2007) Viscoplastic parameter estimation by high strain-rate experiments and inverse modeling—speckle measurements and high-speed photography. Int J Solids Struct 44:145–164.CrossRefGoogle Scholar
  27. 27.
    Kajberg J, Lindkvist G (2004) Characterisation of materials subjected to large strains by inverse modelling based on in-plane displacement fields. Int J Solids Struct 41:3439–3459.zbMATHCrossRefGoogle Scholar
  28. 28.
    Hart JD, Powell GH, Zulfigar N (1996) A material model for pipeline steels. International Pipeline Conference ASME 2:613–627.Google Scholar

Copyright information

© Society for Experimental Mechanics 2008

Authors and Affiliations

  • M. A. Sutton
    • 1
    Email author
  • J. H. Yan
    • 1
  • S. Avril
    • 2
    • 4
  • F. Pierron
    • 2
  • S. M. Adeeb
    • 3
  1. 1.Department of Mechanical EngineeringUniversity of South CarolinaColumbiaUSA
  2. 2.Ecole Nationale Supérieure d’Arts et MétiersChâlons en ChampagneFrance
  3. 3.Department of Civil and Environmental EngineeringUniversity of Alberta, 3-016 Markin/CNRL Natural Resources Engineering FacilityEdmontonCanada
  4. 4.Departement of Health Science and EngineeringEcole Nationale Supérieure des Mines de Saint-EtienneSaint-Etienne Cedex 2France

Personalised recommendations