Experimental Mechanics

, Volume 48, Issue 4, pp 403–419 | Cite as

Stress Reconstruction and Constitutive Parameter Identification in Plane-Stress Elasto-plastic Problems Using Surface Measurements of Deformation Fields

Article

Abstract

This paper deals with the identification of elasto-plastic constitutive parameters from deformation fields measured over the surface of thin flat specimens with the grid method. The approach for recovering the constitutive parameters is the virtual fields method. A dedicated algorithm is used for deriving the distribution of the 2D stress components from the measured deformation fields. A state of plane stress is assumed. Guesses of the constitutive parameters are input in the algorithm and updated until the stresses satisfy the principle of virtual work in the least squares sense. The advantage of this approach is that it can handle very heterogeneous plastic flows and it is much faster than classical finite element model updating approaches. An experimental application is provided to demonstrate it. Six mild steel double-notched specimens have been tested in a configuration combining tension and in-plane bending. The identified parameters are in good agreement with their reference counterparts. Stress fields are eventually reconstructed across the specimen all along the test for analyzing the evolution of the plastic flow.

Keywords

Virtual fields method Inverse method Plasticity Stress localization Full-field measurements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Laws V (1981) Derivation of the tensile stress-strain curve from bending data. J Mater Sci 16:1299–1304.CrossRefGoogle Scholar
  2. 2.
    Mayville RA, Finnie I (1982) Uniaxial stress-strain curves from a bending test. Exp Mech 22:197–201.CrossRefGoogle Scholar
  3. 3.
    Brunet M, Morestin F, Godereaux S (2001) Nonlinear kinematic hardening identification for anisotropic sheet metals with bending-unbending tests. J Eng Mater Technol 123:378–383CrossRefGoogle Scholar
  4. 4.
    Zhao KM (2004) Inverse estimation of material properties for sheet metals. Commun Numer Methods Eng 20:105–118MATHCrossRefGoogle Scholar
  5. 5.
    Mahnken R, Stein E (1994) The identification of parameters for visco-plastic models via finite-elements methods and gradient methods. Model Simulation Mater Sci Eng 2:597–616CrossRefGoogle Scholar
  6. 6.
    Mahnken R, Stein E (1996) A unified approach for parameter identification of inelastic material models in the frame of the finite element method. Comput Methods Appl Mech Eng 136:225–258MATHCrossRefGoogle Scholar
  7. 7.
    Meuwissen MHH (1998) An inverse method for the mechanical characterisation of metals. PhD thesis, Eindhoven Technical University.Google Scholar
  8. 8.
    Meuwissen MHH, Oomens CWJ, Baaijens FPT, Petterson R, Janssen JD (1998) Determination of the elasto-plastic properties of aluminium using a mixed numerical-experimental method. J Mater Process Technol 75:204–211.CrossRefGoogle Scholar
  9. 9.
    Okada H, Fukui Y, Kumazawa N (1999) An inverse analysis determining the elastic-plastic stress-strain relationship using nonlinear sensitivities. Comput Model Simulation Eng 4(3):176–185.Google Scholar
  10. 10.
    Hoc T, Crépin J, Gélébart L, Zaoui A (2003) A procedure for identifying the plastic behaviour of single crystals from the local response of polycrystals. Acta Materialia 51:5477–5488.CrossRefGoogle Scholar
  11. 11.
    Kajberg J, Lindkvist G (2004) Characterization of materials subjected to large strains by inverse modelling based on in-plane displacement fields. Int J Solids Struct 41:3439–3459.MATHCrossRefGoogle Scholar
  12. 12.
    Cooreman S, Lecompte D, Sol H, Vantomme J, Debruyne D (2007) Elasto-plastic material parameter identification by inverse methods: Calculation of the sensitivity matrix. Int J Solids Struct 44(13):4329–4341.MATHCrossRefGoogle Scholar
  13. 13.
    Geng L, Shen Y, Wagoner RH (2002) Anisotropic hardening equations derived from reverse-bend testing. Int J Plasticity 18(5-6):743–767.MATHCrossRefGoogle Scholar
  14. 14.
    Grédiac M, Pierron F (2006) Applying the virtual field method to the identification of elasto-plastic constitutive parameters. Int J Plasticity 22(4):602–627.MATHCrossRefGoogle Scholar
  15. 15.
    Grédiac M, Pierron F, Avril S, Toussaint E (2006) The virtual fields method for extractiong constitutive parameters from full-field measurements: a review. Strain 42:233–253.CrossRefGoogle Scholar
  16. 16.
    Pannier Y, Avril S, Rotinat R, Pierron R (2006) Identification of elasto-plastic constitutive parameters from statically undetermined tests using the virtual fields method. Exp Mech 46(6):735–755.CrossRefGoogle Scholar
  17. 17.
    Sutton MA, Deng X, Liu J, Yang L (1996) Determination of elastic–plastic stresses and strains from measured surface strain data. Exp Mech 36(2):99–112.CrossRefGoogle Scholar
  18. 18.
    Lemaître J, Chaboche J-L (1990) Mechanics of solid materials. Cambridge University Press, Cambridge, UK.MATHGoogle Scholar
  19. 19.
    Grédiac M, Toussaint E, Pierron F (2002) Special virtual fields for the direct determination of material parameters with the virtual fields method. 1–Principle and definition. Int J Solids Struct 39(10):2691–2705.MATHCrossRefGoogle Scholar
  20. 20.
    Grédiac M, Toussaint E, Pierron F (2002) Special virtual fields for the direct determination of material parameters with the virtual fields method. 2–Application to in-plane properties. Int J Solids Struct 39(10):2707–2730.MATHCrossRefGoogle Scholar
  21. 21.
    Chapelle D, Darrieulat M (2003) The occurence of shear banding in a millimeter scale (123)[634] grain of an al-4.5% Mg alloy during plane strain compression. Mater Sci Eng A 347(1-2):32–41.CrossRefGoogle Scholar
  22. 22.
    Avril S, Pierron F (2007) General framework for the identification of constitutive parameters from full-field measurements in linear elasticity. Int J Solids Struct 44(14-15):4978–5002.CrossRefGoogle Scholar
  23. 23.
    Avril S, Grédiac M, Pierron F (2004) Sensitivity of the virtual fields method to noisy data. Comput Mech 34(6):439–452.MATHCrossRefGoogle Scholar
  24. 24.
    Feng Z, Rowlands RE (1991) Smoothing finite-element and experimental hybrid technique for stress analyzing composites. Computer Struct 6:631–639.CrossRefGoogle Scholar
  25. 25.
    Piro J-L, Grédiac M (2004) Producing and transferring low-spatial-frequency grids for measuring displacement fields with moiré and grid methods. Experimental Techniques 28(4):23–26.CrossRefGoogle Scholar
  26. 26.
    Surrel Y (1996) Design of algorithms for phase measurements by the use of phase-stepping. Appl Optic 35(1):51–60.CrossRefGoogle Scholar
  27. 27.
    Avril S, Pierron F, Yan J, Sutton M (2007) Identification of strain-rate sensitivity with the virtual fields method. In: Gdoutos E (ed) Proceedings of ICEM13, Alexandoupolis, Greece.Google Scholar

Copyright information

© Society for Experimental Mechanics 2007

Authors and Affiliations

  1. 1.Laboratoire de Mécanique et Procédés de FabricationEcole Nationale Supérieure d’Arts et MétiersChâlons-en-Champagne CedexFrance

Personalised recommendations