Experimental Mechanics

, Volume 48, Issue 1, pp 107–117 | Cite as

Integrated Measurement Technique for Curing Process-Dependent Mechanical Properties of Polymeric Materials Using Fiber Bragg Grating

  • Y. Wang
  • B. Han
  • D. W. Kim
  • A. Bar-Cohen
  • P. Joseph


We propose an integrated technique to measure critical mechanical properties of polymeric materials. The method is based on a fiber Bragg grating (FBG) sensor. A polymer of interest is cured around a glass FBG and the Bragg wavelength (BW) shift is measured and documented while polymerization progresses at the curing temperature. After complete polymerization, the BW shift is monitored continuously as the temperature of the cured polymer changes. The desired material properties are then found inversely from the relationship between the Bragg wavelength shift and the deformation of the polymer caused by the changes in the material properties.


Mechanical properties of polymer Fiber Bragg grating sensor Process-dependent properties Chemical shrinkage Glass transition temperature Coefficient of thermal expansion Elastic modulus 



Sponsorship by Intel Corporation is greatly appreciated and graciously acknowledged.


  1. 1.
    Morey WW, Meltz G, Glenn WH (1989) Fiber optic Bragg grating sensors. In Proc. SPIE, Fiber Optics and Laser Sensors VII, 1169, pp. 98–107.Google Scholar
  2. 2.
    Kersey AD, Davis MA, Patrick HJ, LeBlanc M, Koo KP, Askins CG, Putnam MA, Friebele EJ (1997) Fiber grating sensors. J Lightwave Technol 15:1442–1463.CrossRefGoogle Scholar
  3. 3.
    Hill KO, Meltz G (1997) Fiber Bragg grating technology fundamentals and overview. J Lightwave Technol 15:1263–1276.CrossRefGoogle Scholar
  4. 4.
    Gafsi R, Sherif MAE (2000) Analysis of induced-Birefringence effects on fiber Bragg gratings. Opt Fiber Technol 6:299–323.CrossRefGoogle Scholar
  5. 5.
    Hocker GB (1979) Fiber-optic sensing of pressure and temperature. Appl Optics 18:1445–1459.CrossRefGoogle Scholar
  6. 6.
    Zhang Y, Feng D, Liu Z, Guo Z, Dong X, Chiang KS, Chu BCB (2001) High-sensitivity pressure sensor using a shielded polymer-coated fiber Bragg grating. IEEE Photonics Technol Lett 13:618–619.CrossRefGoogle Scholar
  7. 7.
    Xu MG, Reekie L, Chow YT, Dakin JP (1993) Optical in-fiber grating high pressure sensor. Electron Lett 29:398–399.CrossRefGoogle Scholar
  8. 8.
    Steenkiste RV, Springer G (1997) Strain and temperature measurement with fiber optic sensors. Technomic Publishing.Google Scholar
  9. 9.
    Kollar LP, Steenkiste RV (1998) Calculation of the stresses and strains in embedded fiber optic sensors. J Compos Mater 32:1647–1679.Google Scholar
  10. 10.
    Murukeshan VM, Chan PY, Ong LS, Seah LK (2000) Cure monitoring of smart composites using fiber Bragg grating based embedded sensors. Sens Actuators 79:153–161.CrossRefGoogle Scholar
  11. 11.
    O’Dwyery MJ, Maistrosz GM, Jamesy SW, Tatamy RP, Partridgez IK (1998) Relating the state of cure to the real-time internal strain development in a curing composite using in-fibre Bragg gratings and dielectric sensors. Meas Sci Technol 9:1153–1158.CrossRefGoogle Scholar
  12. 12.
    Guemes JA, Menéndez JM (2002) Response of Bragg grating fiber-optic sensors when embedded in composite laminates. Compos Sci Technol 62:959–966.CrossRefGoogle Scholar
  13. 13.
    Dano MG, Laudati A, Russo M, Nasser J, Persiano GV, Cusano A (2004) Advanced cure monitoring by optoelectronic multifunction sensing system. Thin Solid Films 450:191–194.CrossRefGoogle Scholar
  14. 14.
    Lau K, Yuan L, Zhou L (2001) Thermal effects on an embedded grating sensor in an FRP structure. Smart Mater Struc 10:705–712.CrossRefGoogle Scholar
  15. 15.
    Steenkiste RV, Kollar L (1998) Effect of the coating on the stresses and strains in an embedded fiber optic sensor. J Compos Mater 32:1680–1711.Google Scholar
  16. 16.
    Nagano K, Kawakami S, Nishida S (1978) Change of the refractive index in an optical fiber due to external forces. Appl Optics 17:2080–2085.Google Scholar
  17. 17.
    Narasimhamurty T (1981) Photoelastic and electro-optic properties of crystals. Plenum, New York.Google Scholar
  18. 18.
    Kelly G, Lyden C, Lawton W, Barrett J, Saboui A, Pape H, Peters HJB (1996) Importance of molding compound chemical shrinkage in the stress and warpage analysis of PQFP’s. IEEE Trans Compon Packaging Manuf Technol, Part B 19:296–300.CrossRefGoogle Scholar
  19. 19.
    Playbon BF (1992) An introduction to applied numerical analysis. PWS-KENT Publishing Company, Boston, pp. 33–34.Google Scholar
  20. 20.
    Tao X, Tang L, Du W, Choy C (2000) Internal strain measurement by fiber Bragg grating sensors in textile composites. Compos Sci Technol 60:657–669.CrossRefGoogle Scholar
  21. 21.
    Tanaka N, Okabe Y, Takeda N (2003) Temperature-compensated strain measurement using fiber Bragg grating sensors embedded in composite laminates. Smart Mater Struc 12:940–946.CrossRefGoogle Scholar
  22. 22.
    Lange J, Toll S, Manson JAE (1995) Residual stress build-up in thermoset films cured above their ultimate glass transition temperature. Polymer 36:3135–3141.CrossRefGoogle Scholar
  23. 23.
    Lange J, Toll S, Manson JAE (1997) Residual stress build-up in thermoset films cured below their ultimate glass transition temperature. Polymer 38:809–815.CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2007

Authors and Affiliations

  • Y. Wang
    • 1
  • B. Han
    • 1
  • D. W. Kim
    • 1
  • A. Bar-Cohen
    • 1
  • P. Joseph
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of MarylandCollege ParkUSA
  2. 2.Department of Mechanical EngineeringClemson UniversityClemsonUSA

Personalised recommendations