Experimental Mechanics

, Volume 48, Issue 1, pp 1–8 | Cite as

Comparison of Test Specimens for Characterizing the Dynamic Properties of Rubber

  • M. A. Castellucci
  • A. T. Hughes
  • W. V. Mars


Dynamic material properties inferred via experiment can be strongly influenced by the choice of test specimen geometry unless care is taken to ensure that mechanical fields (stress, strain, etc.) within the specimen adequately reflect the ideal homogeneous deformation state. In this work, finite element models of simple shear, cylindrical compression, simple tension, and bi-conical shear test specimens were analyzed in order to quantify the relative conformity of each specimen to its corresponding ideal. Three metrics of conformity were evaluated, based respectively on the distributions of stress, strain, and strain energy density. The results show that a simple shear specimen provides superior conformity. Other factors involved in the selection of test specimen geometry are also discussed. Such factors include relative linearity and symmetry of measured stress–strain data, grip slip, and heat build up.


Rubber Grip effects End effects Edge effects Dynamic characterization Payne effect Fletcher–Gent effect 


  1. 1.
    Payne AR (1962) The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I. J Appl Polym Sci VI:57–63.CrossRefGoogle Scholar
  2. 2.
    Fletcher WP, Gent AN (1953) Non-linearity in the dynamic properties of vulcanized rubber compounds. Trans Inst Rubber Ind 29:266–280.Google Scholar
  3. 3.
    Wang MJ (1998) Effect of polymer–filler and filler–filler interactions on dynamic properties of filled vulcanizates. Rubber Chem Technol 71:521–589.Google Scholar
  4. 4.
    Olsson A, Austrell P (2001) A fitting procedure for a viscoelastic–elastoplastic material model. In: Besdo, Schuster, Ihlemann (eds) Constitutive models for Rubber II. Swets & Zeitlinger, Lisse.Google Scholar
  5. 5.
    Ihlemann J, Besdo D (2003) Modelling inelastic stress–strain phenomena and a scheme for efficient experimental characterization. In: Busfield, Muhr (eds) Constitutive models for Rubber III. Swets & Zeitlinger, Lisse.Google Scholar
  6. 6.
    N’emeth I, Schleinzer G, Ogden R, Holzapfel G (2005) On the modeling of amplitude and frequency-dependent properties in rubberlike solids. In: Austrell PE, Kari L (eds) Constitutive models for Rubber IV. Taylor & Francis, London.Google Scholar
  7. 7.
    Kennedy R, Engelhardt M, Day G (1998) RPA measurement of hysteresis for CAE rolling resistance prediction. ITEC, Paper 30A.Google Scholar
  8. 8.
    Gil-Negrete N, Rivas A, Viñolas J (2005) Predicting the dynamic behavior of hydrobushings. Shock Vib 12:91–107.Google Scholar
  9. 9.
    Hwang J, Wu J, Pan T, Yang G (2002) A mathematical hysteretic model for elastomeric isolation bearings. Earthq Eng Struct Dyn 31:771–789.CrossRefGoogle Scholar
  10. 10.
    Gardiner J, Weiss J (2001) Simple shear testing of parallel-fibered planar soft tissue. J Biomech Eng 123:170–175.CrossRefGoogle Scholar
  11. 11.
    Lion A (1998) Thixotropic behaviour of rubber under dynamic loading histories: experiments and theory. J Mech Phys Solids 46(5):895–930.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Bergström J, Boyce M (1998) Constitutive modeling of the large strain time-dependent behavior of elastomers. J Mech Phys Solids 46(5):931–954.zbMATHCrossRefGoogle Scholar
  13. 13.
    Kar K, Bhowmick A (1997) Hysteresis loss in filled rubber vulcanizates and its relationship with heat generation. J Appl Polym Sci 64:1541–1555.CrossRefGoogle Scholar
  14. 14.
    Kim WD, Kim WS, Woo CS, Lee HJ (2004) Some considerations on mechanical testing methods of rubbery materials using nonlinear finite element analysis. Polym Int 53:850–856.CrossRefGoogle Scholar
  15. 15.
    Kim J, Jeong H (2005) A study on the material properties and fatigue life of natural rubber with different carbon blacks. Int J Fatigue 27:263–272.CrossRefGoogle Scholar
  16. 16.
    Lion A (1997) On the large deformation behaviour of reinforced rubber at different temperatures. J Mech Phys Solids 45(11/12):1805–1834.CrossRefGoogle Scholar
  17. 17.
    Kaliske M, Rothert H (1998) Constitutive approach to rate-independent properties of filled elastomers. Int J Solids Struct 35(17):2057–2071.zbMATHCrossRefGoogle Scholar
  18. 18.
    Ramorina G, Vetturi D, Cambiaghi D, Pegoretti A, Ricco T (2003) Developments in dynamic testing of rubber compounds: assessment of non-linear effects. Polym Test 22:681–687.CrossRefGoogle Scholar
  19. 19.
    Kar K, Bhowmick A (1997) High-Strain hysteresis of rubber vulcanizates over a range of compositions, rates, and temperatures. J Appl Polym Sci 65:1429–1439.CrossRefGoogle Scholar
  20. 20.
    Luchini J, Peters J, Arthur R (1994) Tire rolling loss computation with the finite element method. Tire Sci Technol 22(4):206–222.CrossRefGoogle Scholar
  21. 21.
    Rivlin RS (1948) Large elastic deformations of isotropic materials. I. Fundamental concepts. Philos Trans R Soc Lond Ser A Math Phys Sci 240(822):459–490.CrossRefMathSciNetGoogle Scholar
  22. 22.
    Muhr AH (2005) Modeling the stress–strain behavior of rubber. Rubber Chem Technol 78:391–495.Google Scholar
  23. 23.
    Yeoh OH (1990) Characterization of the elastic properties of carbon-black filled rubber vulcanizates. Rubber Chem Technol 63:792–805.Google Scholar
  24. 24.
    Rivlin RS, Saunders DW (1949) Cylindrical shear mounting. Trans Inst Rubber Ind 24:296.Google Scholar
  25. 25.
    Gregory IH, Muhr AH, Stiffness and fracture analysis of bonded rubber blocks in simple shear. In: Boast D, Coveney VA (eds) Finite Element Analysis of Elastomers. Professional Engineering, London, p 265.Google Scholar
  26. 26.
    Yeoh OH (1985) The compression modulus of tall rubber cylinders. J Rubber Res Ind Malays 33:105.Google Scholar

Copyright information

© Society for Experimental Mechanics 2007

Authors and Affiliations

  • M. A. Castellucci
    • 1
  • A. T. Hughes
    • 1
  • W. V. Mars
    • 1
  1. 1.Cooper Tire & Rubber Co.FindlayUSA

Personalised recommendations