Advertisement

Experimental Mechanics

, Volume 46, Issue 6, pp 789–803 | Cite as

“Finite-Element” Displacement Fields Analysis from Digital Images: Application to Portevin–Le Châtelier Bands

  • G. Besnard
  • F. HildEmail author
  • S. Roux
Article

Abstract

A new methodology is proposed to estimate displacement fields from pairs of images (reference and strained) that evaluates continuous displacement fields. This approach is specialized to a finite-element decomposition, therefore providing a natural interface with a numerical modeling of the mechanical behavior used for identification purposes. The method is illustrated with the analysis of Portevin–Le Châtelier bands in an aluminum alloy sample subjected to a tensile test. A significant progress with respect to classical digital image correlation techniques is observed in terms of spatial resolution and uncertainty.

Keywords

Digital image correlation Localization Resolution Texture Uncertainty 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rastogi PK (ed) (2000) Photomechanics, vol 77. Springer, Berlin Heidelberg New York.Google Scholar
  2. 2.
    Sutton MA, McNeill SR, Helm JD, Chao YJ (2000) Advances in two-dimensional and three-dimensional computer vision. In: Rastogi PK (ed) Photomechanics. Springer, Berlin Heidelberg New York, pp 323–372.Google Scholar
  3. 3.
    Lagarde A (ed) (2000) Advanced optical methods and applications in solid mechanics, vol 82. Kluwer, Dordrecht, (The Netherlands).Google Scholar
  4. 4.
    Zienkievicz OC, Taylor RL (1989) The finite element method, 4th edn. McGraw-Hill, London (UK).Google Scholar
  5. 5.
    Horn BKP, Schunck BG (1981) Determining optical flow. Artif Intell 17:185–203.CrossRefGoogle Scholar
  6. 6.
    Hubert PJ (1981) Robust statistics. Wiley, New York (USA).Google Scholar
  7. 7.
    Black M (1992) Robust incremental optical flow. PhD dissertation, Yale University.Google Scholar
  8. 8.
    Odobez J-M, Bouthemy P (1995) Robust multiresolution estimation of parametric motion models. J Vis Commun Image Represent 6:348–365.CrossRefGoogle Scholar
  9. 9.
    Sutton MA, Wolters WJ, Peters WH, Ranson WF, McNeill SR (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 1(3):133–139.CrossRefGoogle Scholar
  10. 10.
    Hild F, Raka B, Baudequin M, Roux S, Cantelaube F (2002) Multi-scale displacement field measurements of compressed mineral wool samples by digital image correlation. Appl Opt IP 41(32):6815–6828.Google Scholar
  11. 11.
    Roux S, Hild F (2006) Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches. Int J Fract (in press).Google Scholar
  12. 12.
    Hild F, Roux S (2006) Digital image correlation: from displacement measurement to identification of elastic proper- ties – a review. Strain 42(2):69–80.CrossRefGoogle Scholar
  13. 13.
    Wagne B, Roux S, Hild F (2002) Spectral approach to displacement evaluation from image analysis. Eur Phys J AP 17:247–252.CrossRefGoogle Scholar
  14. 14.
    Roux S, Hild F, Berthaud Y (2002) Correlation image velocimetry: a spectral approach. Appl Opt 41(1):108–115.Google Scholar
  15. 15.
    Burt PJ, Yen C, Xu X (1982) Local correlation measures for motion analysis: a comparative study. In: Proceedings IEEE conf. on pattern recognition and image processing, pp. 269–274.Google Scholar
  16. 16.
    Schreier HW, Braasch JR, Sutton MA (2000) Systematic errors in digital image correlation caused by intensity interpolation. Opt Eng 39(11):2915–2921.CrossRefGoogle Scholar
  17. 17.
    Bergonnier S, Hild F, Roux S (2006) Local anisotropy analysis for non-smooth images. Pattern Recogn (in press).Google Scholar
  18. 18.
    Périé J-N, Calloch S, Cluzel C, Hild F (2002) Analysis of a multiaxial test on a C/C composite by using digital image correlation and a damage model. Exp Mech 42(3):318–328.CrossRefGoogle Scholar
  19. 19.
    Holst G (1998) CCD arrays, cameras and displays. SPIE Engineering Press, Washington, District of Columbia (USA).Google Scholar
  20. 20.
    ISO (1993) International vocabulary of basic and general terms in metrology (VIM). International Organization for Standardization, Geneva (Switzerland).Google Scholar
  21. 21.
    Besnard G (2005) Corrélation d’images et identification en mécanique des solides. University Paris 6, Intermediate MSc report.Google Scholar
  22. 22.
    Portevin A, Le Châtelier F (1923) CR Acad Sci Paris 176:507.Google Scholar
  23. 23.
    Cottrell AH (1953) A note on the Portevin–Le Châtelier effect. Phil Mag 44:829–832.Google Scholar
  24. 24.
    McCormick PG (1972) A model of the Portevin–Le Châtelier effect in substitutional alloys. Acta Metall 20:351–354.CrossRefMathSciNetGoogle Scholar
  25. 25.
    Clausen AH, Borvik T, Hopperstad OS, Benallal A (2004) Flow and fracture characteristics of aluminium alloy AA5083-H116 as function of strain rate, temperature and triaxiality. Math Sci Eng A 364:260–272.CrossRefGoogle Scholar
  26. 26.
    Thevenet D, Mliha-Touati M, Zeghloul A (2000) Characteristics of the propagating deformation bands associated with the Portevin–Le Châtelier effect in an Al–Zn–Mg–Cu alloy. Math Sci Eng A 291:110–117.CrossRefGoogle Scholar
  27. 27.
    Shabadi R, Kumara S, Roven HJ, Dwarakadasa ES (2004) Characterisation of PLC band parameters using laser speckle technique. Math Sci Eng A 364:140–150.CrossRefGoogle Scholar
  28. 28.
    Louche H, Vacher P, Arrieux R (2005) Thermal observations associated with the Portevin–Le Châtelier effect in an Al–Mg alloy. Math Sci Eng A 404:188–196.CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2006

Authors and Affiliations

  1. 1.LMT-Cachan, ENS de Cachan/CNRS-UMR 8535/, Université Paris 6Cachan CedexFrance
  2. 2.Unité Mixte CNRS/Saint-Gobain Surface du Verre et Interfaces 39 quai Lucien LefrancAubervilliers CedexFrance

Personalised recommendations