Experimental Mechanics

, Volume 46, Issue 6, pp 735–755 | Cite as

Identification of Elasto-Plastic Constitutive Parameters from Statically Undetermined Tests Using the Virtual Fields Method

  • Y. Pannier
  • S. Avril
  • R. RotinatEmail author
  • F. Pierron


This paper presents an experimental validation of the use of the virtual fields method to identify the elasto-plastic behaviour of an iron specimen from full-field measurements with the grid method and a simple heterogeneous test configuration. The experimental procedure is carefully detailed since it is of primary importance to obtain good identification results. In particular, the use of two back-to-back cameras has proved essential to eliminate out-of-plane effects. Then, the procedure for extracting the elastic parameters and the parameters of a Voce’s hardening model using the virtual fields method is presented. The results are very convincing and encouraging for future developments using more complex test geometries leading to fully multi-axial stress states. It is a first step towards the development of such inverse procedures as an alternative to difficult and costly methods involving homogeneous tests using multi-axial testing machines.


Optical full-filled measurements Grid method Identification Elastoplastic behavior Virtual fields method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mahnken R, Stein E (1996) Parameter identification for viscoplastic models based on analytical derivatives of a least-squares functional and stability investigations. Int J Plast 12:451–476.CrossRefzbMATHGoogle Scholar
  2. 2.
    Mahnken R (1999) Aspects on the finite element implementation of the gurson model including parameter identification. Int J Plast 15:1111–1137.CrossRefzbMATHGoogle Scholar
  3. 3.
    Bruhns OT, Anding DK (1999) On the simultaneous estimation of model parameters used in constitutive laws for inelastic material behaviour. Int J Plast 15:1311–1340.CrossRefzbMATHGoogle Scholar
  4. 4.
    Harth T, Schwan S, Lehn J, Kollmann FG (2004) Identification of material parameters for inelastic constitutive models: statistical analysis and design of experiments. Int J Plast 20:1403–1440.CrossRefzbMATHGoogle Scholar
  5. 5.
    Yoshida F, Urabeb M, Hinoa R, Toropov VV (2004) Inverse approach to identification of material parameters of cyclic elasto-plasticity for component layers of a bimetallic sheet. Int J Plast 19:2149–2170.CrossRefGoogle Scholar
  6. 6.
    Laws V (1981) Derivation of the tensile stress-strain curve from bending data. J Mater Sci 16:1299–1304.CrossRefGoogle Scholar
  7. 7.
    Mayville RA, Finnie I (1982) Uniaxial stress-strain curves from a bending test. Exp Mech 22:197–201.CrossRefGoogle Scholar
  8. 8.
    Brunet M, Morestin F, Godereaux S (2001) Nonlinear kinematic hardening identification for anisotropic sheet metals with bending-unbending tests. J Eng Mater Technol 123:378–383.CrossRefGoogle Scholar
  9. 9.
    Zhao KM (2004) Inverse estimation of material properties for sheet metals. Commun Numer Methods Eng 20:105–118.CrossRefzbMATHGoogle Scholar
  10. 10.
    Kajberg J, Sundin KG, Melin LG, Ståhle P (2004) High strain rate tensile and viscoplastic parameter identification using micoscopic high-speed photography. Int J Plast 20:561–575.CrossRefzbMATHGoogle Scholar
  11. 11.
    Mahnken R, Stein E (1994) The identification of parameters for visco-plastic models via finite-elements methods and gradient methods. Model Simul Mater Sci Eng 2:597–616.CrossRefGoogle Scholar
  12. 12.
    Mahnken R, Stein E (1996) A unified approach for parameter identification of inelastic material models in the frame of the finite element method. Comput Methods Appl Mech Eng 136:225–258.CrossRefzbMATHGoogle Scholar
  13. 13.
    Meuwissen MHH (1998) An inverse method for the echanical characterisation of metals. PhD thesis, Eindhoven Technical University, The Netherlands.Google Scholar
  14. 14.
    Meuwissen MHH, Oomens CWJ, Baaijens FPT, Petterson R, Janssen JD (1998) Determination of the elasto-plastic properties of aluminium using a mixed numerical-experimental method. J Mater Process Technol 75:204–211.CrossRefGoogle Scholar
  15. 15.
    Okada H, Fukui Y, Kumazawa N (1999) An inverse analysis determining the elastic-plastic stress-strain relationship using nonlinear sensitivities. Comput Model Simul Eng 4(3):176–185.Google Scholar
  16. 16.
    Hoc T, Crépin J, Gélébart L, Zaoui A (2003) A procedure for identifying the plastic behaviour of single crystals from the local response of polycrystals. Acta Mater 51:5477–5488.CrossRefGoogle Scholar
  17. 17.
    Kajberg J, Lindkvist G (2004) Characterization of materials subjected to large strains by inverse modelling based on in-plane displacement fields. Int J Solids Struct 41:3439– 3459.CrossRefzbMATHGoogle Scholar
  18. 18.
    Geng L, Shen Y, Wagoner, RH (2002) Anisotropic hardening equations derived from reverse-bend testing. Int J Plast 18(5–6).Google Scholar
  19. 19.
    Grédiac M (1989) Principe des travaux virtuels et identification. Comptes Rendus de l’Académie des Sciences 309(2):1–5 (in French with English abstract).Google Scholar
  20. 20.
    Grediac M, Pierron F, Surrel Y (1999) Novel procedure for complete in-plane composite characterization using a single T-shaped specimen. Exp Mech 39(2):142–149.CrossRefGoogle Scholar
  21. 21.
    Moulart R, Avril S, Pierron F (2006) Identification of the through-thickness rigidities of a thick laminated composite tube. Composites Part A: Applied Science and Manufacturing, Oregon.Google Scholar
  22. 22.
    Grediac M, Toussaint E, Pierron F (2002) Special virtual fields for the direct determination of material parameters with the virtual fields method. 1–Principle and definition. Int. J. Solids Strucs. 39(10):2691–2705.CrossRefzbMATHGoogle Scholar
  23. 23.
    Grediac M, Toussaint F, Pierron E (2002) Special virtual fields for the direct determination of material parameters with the virtual fields method. 2–application to in-plane properties. Int. J. Solids Strucs. 39(10):2707–2730.CrossRefzbMATHGoogle Scholar
  24. 24.
    Avril S, Gédiac M, Pierron F (2004) Sensitivity of the virtual fields method to noisy data. Comput. Mech. 34(6):439–452.Google Scholar
  25. 25.
    Grediac M, Pierron F (2005) Applying the virtual field method to the identification of elasto-plastic constitutive parameters. Int J Plast. 26(4):602–607.Google Scholar
  26. 26.
    Voce E (1955) A practical strain-hardening function. Metallurgia 51:219–226.Google Scholar
  27. 27.
    Kobayashi A (1993) Handbook on Exp Mech, 2nd edn. Society for Exp Mech, Connecticut.Google Scholar
  28. 28.
    Surrel Y Optique C1.
  29. 29.
    Surrel Y (1994) Moiré and grid methods: a signal processing approach. In: Ryszard J. Pryputniewicz, Jacek Stupnicki (eds) Interferometry ‘94: photomechanics, vol. 2342. The International Society for Optical Engineering, pp. 213–220.Google Scholar
  30. 30.
    Creath K (1988) Phase measurement interferometry techniques. In: Wolf E (ed) Progress in optics, Elsevier, Amsterdam, The Netherlands; New York, vol. 26, chap. 5, pp. 349–383.Google Scholar
  31. 31.
    Phillion DW (1997) General methods for generating phase-shifting interferometry algorithms. Appl Opt 36(31):8098–8115.CrossRefGoogle Scholar
  32. 32.
    Surrel Y (1996) Design of algorithms for phase measurements by the use of phase-stepping. Appl Opt 35(1):51–60.CrossRefGoogle Scholar
  33. 33.
    Surrel Y (2000) Fringe analysis. In: Rastogi PK (ed) Photomechanics / TAP77. Springer, Berlin Heidelberg New York, pp. 57–104.Google Scholar
  34. 34.
    Parks VJ (1993) Geometric moiré. In: Kobayashi A (ed) Handbook on experimental mechanics, 2nd edn. Society for Exp Mech, Connecticut, chap. 6, pp. 267–296,Google Scholar
  35. 35.
    Post D (1982) Developments in moiré interferometry. Opt Eng 21(3):458–467.Google Scholar
  36. 36.
    Piro J-L, Grédiac M (2004) Producing and transferring lowspatial-frequency grids for measuring displacement fields with moiré and grid methods. Exp Tech 28(4):23–26.CrossRefGoogle Scholar
  37. 37.
    Sutton MA, Deng X, Liu J, Yang L (1996) Determination of elastic-plastic stresses and strains from measured surface strain data. Exp Mech 36(2):99–112.CrossRefGoogle Scholar
  38. 38.
    Lemaître J, Chaboche J-L (1990) Mechanics of solid materials. Cambridge University Press, UK.zbMATHGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2006

Authors and Affiliations

  1. 1.Laboratoire de Mécanique et Procédés de Fabrication (JE 2381)Ecole Nationale Supérieure d’Arts et MétiersChâlons-en-Champagne CedexFrance

Personalised recommendations