Advertisement

Experimental Mechanics

, Volume 47, Issue 2, pp 237–249 | Cite as

Cure-dependent Viscoelastic Poisson’s Ratio of Epoxy

  • D. J. O’Brien
  • N. R. Sottos
  • S. R. White
Article

Abstract

The evolution of the lateral contraction ratio of two commercial (high and low temperature cure) epoxy resins is studied in uniaxial tension using moiré interferometry. The ratio of transverse to axial strains evolves from an elastic value of about 0.40 to a rubbery plateau value of 0.49 at long times. Furthermore, the data indicate that the contraction ratio follows time-temperature superposition with a shift function indistinguishable from other axial viscoelastic functions. The lateral contraction behavior at several cure states past gelation was measured and a model is proposed to describe the cure dependence.

Keywords

Viscoelasticity Poisson’s ratio Cure-dependence Moiré interferometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tschoegl NW, Knauss WG, Emri I (2002) Poisson’s ratio in linear viscoelasticity–a critical review. Mech Time-depend Mater 6:3–51.CrossRefGoogle Scholar
  2. 2.
    Bogy DB, Bugdayci N, Talke FE (1979) Experimental determination of creep functions for thin orthotropic polymer films. IBM J Res Develop 23(4):450–458.CrossRefGoogle Scholar
  3. 3.
    Yee AF, Takemori MT (1982) Dynamic bulk and shear relaxation in glassy polymers. I. Experimental results and techniques on PMMA. J Appl Polym Sci 20:205–224. (physics edition)Google Scholar
  4. 4.
    Giovagoni M (1994) On the direct measurment of the dynamic Poisson’s ratio. Mech Mater 17:33–46.CrossRefGoogle Scholar
  5. 5.
    Delin M, Rychwalski R, Kubát J (1995) Volume changes during stress relaxation in polyethylene. Rheol Acta 34(2):182–195.CrossRefGoogle Scholar
  6. 6.
    Tcharkhtchi A, Faivre S, Roy LE, Trotignon JP, Verdu J (1996) Mechanical properties of thermosets. Part I. Tensile properties of an anhydride cured epoxy. J Mater Sci 31:2687–2692.CrossRefGoogle Scholar
  7. 7.
    Stokes VK, Nied HF (1988) Lateral strain effects during the large extension of thermoplastics. Polym Eng Sci 28(19):1209–1218.CrossRefGoogle Scholar
  8. 8.
    Urayama K, Takigawa T, Masuda T (1993) Poisson’s ratio of poly(vinyl alcohol) gels. Macromolecules 26:3092–3096.CrossRefGoogle Scholar
  9. 9.
    Weber H, Wolf T, Dunger U (1997) Determination of relaxation moduli and Poisson’s ratio in uniaxially loaded solid polyethylene foam specimens as part of full mechanical characterization. Mech Time-depend Mater 1:195–208.CrossRefGoogle Scholar
  10. 10.
    Righetti R, Ophir J, Srinivasan S, Krouskop T (2004) The feasibility of using elastography for imaging the Poisson’s ratio in porous media. Ultrasound Med Biol 30(2):215–228.CrossRefGoogle Scholar
  11. 11.
    Krause I, Segreto AJ, Przirembel H, Mach RL (1966) Poisson’s ratio of viscoelastic materials. Mater Sci Eng 1:239–250.CrossRefGoogle Scholar
  12. 12.
    Tsou AH, Greener J, Smith GD (1995) Stress relaxation of polymer films in bending. Polymer 36(5):949–954.CrossRefGoogle Scholar
  13. 13.
    Arzoumanidis GA, Liechti KM (2003) Linear viscoelastic property measurement and its significance for some nonlinear viscoelasticity models. Mech Time-depend Mater 7:209–250.CrossRefGoogle Scholar
  14. 14.
    Ernst LJ, Zhang GQ, Jansen KMB, Bressers HJL (2003) Time- and temperature-dependent thermo-mechanical modeling of a packaging molding compound and its effect on packaging process stresses. J Electron Packag 125:539–548.CrossRefGoogle Scholar
  15. 15.
    Lu H, Zhang X, Knauss WG (1997) Uniaxial, shear, and poisson relaxation and their conversion to bulk relaxation: studies on poly(methyl methacrylate). Polym Eng Sci 37(6):1053–1064.CrossRefGoogle Scholar
  16. 16.
    Kugler HP, Stacer RG, Stemile C (1990) Direct measurement of Poisson’s ratio in elastomers. Rubber Chem Technol 63(4):473–487.Google Scholar
  17. 17.
    Theocaris PS, Hadjijoseph Chr (1965) Transient lateral contraction ratio of polymers in creep and relaxation. Kolloid-Z Z Polym 202(2):133–139.CrossRefGoogle Scholar
  18. 18.
    Theocaris PS (1979) Influence of plasticizer on Poisson’s ratio of epoxy polymers. Polymer 20:1149–1152.CrossRefGoogle Scholar
  19. 19.
    van der Varst PG Th, Kortsmit WG (1992) Notes on the lateral contraction of linear isotropic viscoelastic materials. Arch Appl Mech 62:338–346.zbMATHGoogle Scholar
  20. 20.
    Hilton HH (2001) Implications and constraints of time-independent Poisson’s ratios in linear isotropic and anisotropic viscoelasticity. J Elast 63:221–251.zbMATHCrossRefGoogle Scholar
  21. 21.
    Tschoegl NW (1989) The phenomenological theory of viscoelasticity. Springer, Berlin Heidelberg New York.Google Scholar
  22. 22.
    Shrotriya P, Sottos NR (2004) Local time-temperature dependent deformation of a Woven composite. Exp Mech 44:336–354Google Scholar
  23. 23.
    O’Brien DJ, White SR (2003) Cure kinetics, glass transition, and gelation of EPON 862/W epoxy. Polym Eng Sci 43(4):863–874.CrossRefGoogle Scholar
  24. 24.
    O’Brien DJ, Mather PT, White SR (2001) Viscoelastic properties of an epoxy resin during cure. J Compos Mater 35(10):883–904.CrossRefGoogle Scholar
  25. 25.
    Post D, Han BF, Ifju P (1994) High sensitivity moiré. Springer, Berlin Heidelberg New York.Google Scholar
  26. 26.
    Trottle CR (1984) An encyclopedia of metallurgy and materials. MacDonald and Evans, Plymouth, UK.Google Scholar
  27. 27.
    Ferry JD (1980) Viscoelastic properties of polymers. Third edition. Wiley, New York.Google Scholar
  28. 28.
    Callister WD (1994) Materials science and engineering, an introduction. Wiley, New York.Google Scholar
  29. 29.
    Drozdov AD (2001) The nonlinear viscoelastic response of glassy polymers subjected to physical aging. Macromol Theory Simul 10(5):491–506.CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2007

Authors and Affiliations

  • D. J. O’Brien
    • 1
    • 2
  • N. R. Sottos
    • 3
  • S. R. White
    • 4
  1. 1.Department of Mechanical and Industrial EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Weapons and Materials Research DirectorateUS Army Research LaboratoryAberdeenUSA
  3. 3.Department of Materials Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.Department of Aerospace EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations