Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Multiple Crack Detection of Concrete Structures Using Impedance-based Structural Health Monitoring Techniques

  • 1430 Accesses

  • 168 Citations

Abstract

This paper presents a feasibility study for practical applications of an impedance-based real-time health monitoring technique applying PZT (Lead–Zirconate–Titanate) patches to concrete structures. First, comparison between experimental and analytical studies for damage detection on a plain concrete beam is made. In the experimental study, progressive surface damage inflicted artificially on the plain concrete beam is assessed by using both lateral and thickness modes of the PZT patches. Then, an analytical study based on finite element (FE) models is carried out to verify the validity of the experimental result. Secondly, multiple (shear and flexural) cracks incurred in a reinforced concrete (RC) beam under a third point bending test are monitored continuously by using a sensor array system composed of the PZT patches. In this study, a root mean square deviation (RMSD) in the impedance signatures of the PZT patches is used as a damage indicator.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Sun FP, Liang C, Rogers CA (1994) Experimental modal testing using piezoceramic patches as collocated sensors-actuators, Proceedings of the 1994 SEM Conference & Exhibits. Baltimore, Michigan, June 6–8.

  2. 2.

    Giurgiutiu V, Rogers CA (1997) Electro-mechanical (E/M) impedance method for structural health monitoring and nondestructive evaluation. International Workshop on Structural Health Monitoring, pp 433–444, Stanford University, California, September 18–20.

  3. 3.

    Raju V, Park G, Cudney HH (1998) Impedance-based health monitoring technique of composite reinforced structures, Proceedings of the 9th International Conf. on Adaptive Str. And Tech., pp 448–457, Cambridge, Massachusetts, October 14–16.

  4. 4.

    Zagrai AN, Giurgiutiu V (2001) Electro-mechanical impedance method for crack detection in thin wall structures, 3rd Int. Workshop of Structural Health Monitoring, Stanford University, California, September 12–14.

  5. 5.

    Park G, Sohn H, Farrar CR, Inman DJ (2003) Overview of piezoelectric impedance-based health monitoring and path forward. Shock Vibr Dig 35(6):451–463, November.

  6. 6.

    Ayres JW, Lalande F, Chaudhry Z, Rogers CA (1998) Qualitative impedance-based health monitoring of civil infrastructures. Smart Mater Struc 7:599–605.

  7. 7.

    Park G, Cudney HH, Inman DJ (2000) Impedance-based health monitoring of civil structural components. J Infrastruct Syst 6(4), December.

  8. 8.

    Tseng KK-H, Soh CK, Gupta A, Bhalla S (2000) Health monitoring of civil infrastructure using smart piezoceramic transducers, Proceedings of the 2nd International Conf. on Comp. Meth. for Smart Str. and Mat., 153–162.

  9. 9.

    Soh CK, Tseng KK-H, Bhalla S, Gupta A (2000) Performance of smart piezoceramic patches in health monitoring of a RC bridge. Smart Mater Struc 9:533–542.

  10. 10.

    Bhalla S, Soh CK (2003) Structural impedance based damage diagnosis by piezo-transducers. Earthq Eng Struct Dyn 32:1897–1916.

  11. 11.

    Park S, Yun C-B, Roh Y, Lee J-J (2005) Health monitoring of steel structures using impedance of thickness modes at PZT patches. Smart Structures and Systems 1(4):339–353.

  12. 12.

    Stokes JP, Cloud GL (1993) The application of interferrometric techniques to the non-destructive inspection of fiber reinforced materials. Exp Mech 33:314–319.

  13. 13.

    Coupled-Field Analysis Guide (Piezoelectric analysis), ANSYS Release 6.0.

Download references

Author information

Correspondence to S. Park.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Park, S., Ahmad, S., Yun, C. et al. Multiple Crack Detection of Concrete Structures Using Impedance-based Structural Health Monitoring Techniques. Exp Mech 46, 609–618 (2006). https://doi.org/10.1007/s11340-006-8734-0

Download citation

Keywords

  • Impedance
  • PZT
  • Structural health monitoring
  • Multiple crack detection
  • Finite element analysis
  • Concrete structures