Experimental Mechanics

, Volume 47, Issue 1, pp 51–62 | Cite as

Micro- and Nanoscale Deformation Measurement of Surface and Internal Planes via Digital Image Correlation

  • T. A. Berfield
  • J. K. Patel
  • R. G. Shimmin
  • P. V. Braun
  • J. Lambros
  • N. R. Sottos


The digital image correlation (DIC) technique is successfully applied across multiple length scales through the generation of a suitable speckle pattern at each size scale. For microscale measurements, a random speckle pattern of paint is created with a fine point airbrush. Nanoscale displacement resolution is achieved with a speckle pattern formed by solution deposition of fluorescent silica nanoparticles. When excited, the particles fluoresce and form a speckle pattern that can be imaged with an optical microscope. Displacements are measured on the surface and on an interior plane of transparent polymer samples with the different speckle patterns. Rigid body translation calibrations and uniaxial tension experiments establish a surface displacement resolution of 1 μm over a 5×6 mm scale field of view for the airbrushed samples and 17 nm over a 100×100 μm scale field of view for samples with the fluorescent nanoparticle speckle. To demonstrate the capabilities of the method, we characterize the internal deformation fields generated around silica microspheres embedded in an elastomer under tensile loading. The DIC technique enables measurement of complex deformation fields with nanoscale precision over relatively large areas, making it of particular relevance to materials that possess multiple length scales.


Digital image correlation Nanoparticle Displacement measurement Multiscale Deformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nalla RK, Kinney JH, Ritchie RO (2003) Mechanistic fracture criteria for the failure of human cortical bone. Nat Mater 2(3):164–168.CrossRefGoogle Scholar
  2. 2.
    Peters WH, Ranson WF (1982) Digital imaging techniques in experimental stress analysis. Opt Eng 21(3):427–431.Google Scholar
  3. 3.
    Sutton MA, Wolters WJ, Peters WH, Ranson WF, McNeill SR (1983) Determination of displacements using an improved digital image correlation method. Image Vis Comput 1(3):133–139.CrossRefGoogle Scholar
  4. 4.
    Peters WH, Ranson WF, Sutton MA, Chu TC, Anderson J (1983) Application of digital correlation methods to rigid body mechanics. Opt Eng 22(6):738–742.Google Scholar
  5. 5.
    Chu TC, Ranson WF, Sutton MA, Peters WH (1985) Applications of digital-image-correlation techniques to experimental mechanics. Exp Mech 25(3):232–244.CrossRefGoogle Scholar
  6. 6.
    Chasiotis I, Knauss WG (2002) A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy. Exp Mech 42(1):51–57.CrossRefGoogle Scholar
  7. 7.
    Schreier HW, Braasch JR, Sutton MA (2000) Systematic errors in digital image correlation caused by intensity interpolation. Opt Eng 39(11):2915–2921.CrossRefGoogle Scholar
  8. 8.
    Gonzalez J, Knauss WG (1998) Strain inhomogeneity and discontinuous crack growth in a particulate composite. J Mech Phys Solids 46(10):1981–1995.zbMATHCrossRefGoogle Scholar
  9. 9.
    Abanto-Bueno J, Lambros J (2005) Experimental determination of cohesive failure properties of a photodegradable copolymer. Exp Mech 45(2):144–152.CrossRefGoogle Scholar
  10. 10.
    Vendroux G, Schmidt N, Knauss WG (1998) Submicron deformation field measurements: part 3. demonstration of deformation determinations. Exp Mech 38(3):154–160.CrossRefGoogle Scholar
  11. 11.
    Abanto-Bueno J, Lambros J (2004) Mechanical and fracture behavior of an artificially ultraviolet-irradiated poly(ethylene-carbon monoxide) copolymer. J Appl Polym Sci 92(1):139–148.CrossRefGoogle Scholar
  12. 12.
    Berfield TA, Patel JK, Shimmin RG, Braun PV, Lambros J, Sottos NR (2006) Fluorescent image correlation for nanoscale deformation measurements. Small 2(5):631.CrossRefGoogle Scholar
  13. 13.
    Patel JK (2003) Digital image correlation for microscale and nanoscale deformation measurement. M.S. Thesis, University of Illinois at Urbana–Champaign.Google Scholar
  14. 14.
    van Blaaderen A, Vrij A (1992) Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres. Langmuir 8(12):2921–2931.CrossRefGoogle Scholar
  15. 15.
    Verhaegh NAM, van Blaaderen A (1994) Dispersions of rhodamine-labeled silica spheres. synthesis, characterization, and fluorescence confocal scanning laser microscopy. Langmuir 10(5):1427–1438.CrossRefGoogle Scholar
  16. 16.
    Goodier JN (1933) Concentration of stress around spherical and cylindrical inclusions and flaws. Appl Mech 1(2):39.Google Scholar

Copyright information

© Society for Experimental Mechanics 2007

Authors and Affiliations

  • T. A. Berfield
    • 1
  • J. K. Patel
    • 1
  • R. G. Shimmin
    • 1
  • P. V. Braun
    • 1
  • J. Lambros
    • 1
  • N. R. Sottos
    • 1
  1. 1.University of Illinois at Urbana–ChampaignUrbanaUSA

Personalised recommendations