Experimental Mechanics

, 47:7 | Cite as

Experimental Techniques for the Mechanical Characterization of One-Dimensional Nanostructures

Article

Abstract

New materials and nanostructures with superior electro-mechanical properties are emerging in the development of novel devices. Engineering application of these materials and nanostructures requires accurate mechanical characterization, which in turn requires development of novel experimental techniques. In this paper, we review some of the existing experimental techniques suitable to investigate the mechanics of one-dimensional (1D) nanostructures. Particular emphasis is placed on techniques that allow comparison of quantities measured in the tests with predictions arising from multiscale computer simulations on a one to one basis. We begin with an overview of major challenges in the mechanical characterization of 1D nanostructures, followed by a discussion of two distinct types of experimental techniques: nanoindentation/atomic force microscopy (AFM) and in-situ electron microscopy testing. We highlight a recently developed in-situ transmission and scanning electron microscopy testing technique, for investigating the mechanics of thin films and 1D nanostructures, based on microelectromechanical systems (MEMS) technology. We finally present the coupled field (electro and mechanical) characterization of a NEMS bistable switch in-situ a scanning electron microscope (SEM).

Keywords

Nanomechanics In-situ microscopy MEMS Carbon nanotubes Nanowires NEMS 

References

  1. 1.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58.CrossRefGoogle Scholar
  2. 2.
    Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan YQ (2003) One-dimensional nanostructures: Synthesis, characterization, and applications. Adv Mater 15(5):353–389.CrossRefGoogle Scholar
  3. 3.
    Ke CH, Espinosa HD (2006) Nanoelectromechanical Systems (NEMS) and modeling. Handbook of Theoretical and Computational Nanotechnology. American Scientific Publishers.Google Scholar
  4. 4.
    Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453):637–640.CrossRefGoogle Scholar
  5. 5.
    Wildoer JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C (1998) Electronic structure of atomically resolved carbon nanotubes. Nature 391(6662):59–62.CrossRefGoogle Scholar
  6. 6.
    Li DY, Wu YY, Kim P, Shi L, Yang PD, Majumdar A (2003) Thermal conductivity of individual silicon nanowires. Appl Phys Lett 83(14):2934–2936.CrossRefGoogle Scholar
  7. 7.
    Duan XF, Huang Y, Agarwal R, Lieber CM (2003) Singlenanowire electrically driven lasers. Nature 421(6920):241–245.CrossRefGoogle Scholar
  8. 8.
    Dalton AB, Collins S, Munoz E, Razal JM, Ebron VH, Ferraris JP, Coleman JN, Kim BG, Baughman RH (2003) Super-tough carbon-nanotube fibres—These extraordinary composite fibres can be woven into electronic textiles. Nature 423(6941):703.CrossRefGoogle Scholar
  9. 9.
    Fennimore AM, Yuzvinsky TD, Han WQ, Fuhrer MS, Cumings J, Zettl A (2003) Rotational actuators based on carbon nanotubes. Nature 424(6947):408–410.CrossRefGoogle Scholar
  10. 10.
    Ke CH, Espinosa HD (2004) Feedback controlled nanocantilever device. Appl Phys Lett 85(4):681–683.CrossRefGoogle Scholar
  11. 11.
    Cui Y, Wei QQ, Park HK, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533):1289–1292.CrossRefGoogle Scholar
  12. 12.
    Zhang SL, Mielke SL, Khare R, Troya D, Ruoff RS, Schatz GC, Belytschko T (2005) Mechanics of defects in carbon nanotubes: Atomistic and multiscale simulations. Phys Rev B 71(11).Google Scholar
  13. 13.
    Gall K, Diao JK, Dunn ML (2004) The strength of gold nanowires. Nano Lett 4(12):2431–2436.CrossRefGoogle Scholar
  14. 14.
    Haque MA, Saif MTA (2004) Deformation mechanisms in free-standing nanoscale thin films: A quantitative in situ transmission electron microscope study. Proc Natl Acad Sci USA 101(17):6335–6340.CrossRefGoogle Scholar
  15. 15.
    Zhu Y, Espinosa HD (2005) An electromechanical material testing system for in situ electron microscopy and applications. Proc Natl Acad Sci USA 102(41):14503–14508.CrossRefGoogle Scholar
  16. 16.
    Ke CH, Pugno N, Peng B, Espinosa HD (2005) Experiments and modeling of carbon nanotube-based NEMS devices. J Mech Phys Solids 53(6):1314–1333.CrossRefMATHGoogle Scholar
  17. 17.
    Falvo MR, Clary GJ, Taylor RM, Chi V, Brooks FP,Washburn S, Superfine R (1997) Bending and buckling of carbon nanotubes under large strain. Nature 389(6651):582–584.CrossRefGoogle Scholar
  18. 18.
    Williams PA, Papadakis SJ, Falvo MR, Patel AM, Sinclair M, Seeger A, Helser A, Taylor RM, Washburn S, Superfine R (2002) Controlled placement of an individual carbonnanotube onto a microelectromechanical structure. Appl Phys Lett 80(14):2574–2576.CrossRefGoogle Scholar
  19. 19.
    Poncharal P, Wang ZL, Ugarte D, de Heer WA (1999) Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283(5407):1513–1516.CrossRefGoogle Scholar
  20. 20.
    Cumings J, Zettl A (2000) Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289(5479):602–604.CrossRefGoogle Scholar
  21. 21.
    Smith PA, Nordquist CD, Jackson TN, Mayer TS, Martin BR, Mbindyo J, Mallouk TE (2000) Electric-field assisted assembly and alignment of metallic nanowires. Appl Phys Lett 77(9):1399–1401.CrossRefGoogle Scholar
  22. 22.
    Chen XQ, Saito T, Yamada H, Matsushige K (2001) Aligning single-wall carbon nanotubes with an alternatingcurrent electric field. Appl Phys Lett 78(23):3714–3716.CrossRefGoogle Scholar
  23. 23.
    Chung J, Lee J (2003) Nanoscale gap fabrication and integration of carbon nanotubes by micromachining. Sens Actuators A-Phys 104(3):229–235.CrossRefGoogle Scholar
  24. 24.
    Hughes MP, Morgan H (1998) Dielectrophoretic trapping of single sub-micrometre scale bioparticles. J Phys D Appl Phys 31(17):2205–2210.CrossRefGoogle Scholar
  25. 25.
    Huang Y, Duan XF, Wei QQ, Lieber CM (2001) Directed assembly of one-dimensional nanostructures into functional networks. Science 291(5504):630–633.CrossRefGoogle Scholar
  26. 26.
    Fujiwara M, Oki E, Hamada M, Tanimoto Y, Mukouda I, Shimomura Y (2001) Magnetic orientation and magnetic properties of a single carbon nanotube. J Phys Chem A 105(18):4383–4386.CrossRefGoogle Scholar
  27. 27.
    Rao SG, Huang L, Setyawan W, Hong SH (2003) Large-scale assembly of carbon nanotubes. Nature 425(6953):36–37.CrossRefGoogle Scholar
  28. 28.
    Piner RD, Zhu J, Xu F, Hong SH, Mirkin CA (1999) “Dip-pen” nanolithography. Science 283(5402):661–663.CrossRefGoogle Scholar
  29. 29.
    Kim KH, Moldovan N, Espinosa HD (2005) A nanofountain probe with sub-100 nm molecular writing resolution. Small 1(6):632–635.CrossRefGoogle Scholar
  30. 30.
    Dai HJ (2000) Controlling nanotube growth. Physics World 13(6):43–47.Google Scholar
  31. 31.
    Kong J, Soh HT, Cassell AM, Quate CF, Dai HJ (1998) Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395(6705):878–881.CrossRefGoogle Scholar
  32. 32.
    He RR, Gao D, Fan R, Hochbaum AI, Carraro C, Maboudian R, Yang PD (2005) Si nanowire bridges in microtrenches: Integration of growth into device fabrication. Adv Mater 17(17):2098–+.CrossRefGoogle Scholar
  33. 33.
    Salvetat JP, Briggs GAD, Bonard JM, Bacsa RR, Kulik AJ, Stockli T, Burnham NA, Forro L (1999) Elastic and shear moduli of single-walled carbon nanotube ropes. Phys Rev Lett 82(5):944–947.CrossRefGoogle Scholar
  34. 34.
    Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334):1971–1975.CrossRefGoogle Scholar
  35. 35.
    Walters DA, Ericson LM, Casavant MJ, Liu J, Colbert DT, Smith KA, Smalley RE (1999) Elastic strain of freelysuspended single-wall carbon nanotube ropes. Appl Phys Lett 74(25):3803–3805.CrossRefGoogle Scholar
  36. 36.
    Wu B, Heidelberg A, Boland JJ (2005) Mechanical properties of ultrahigh-strength gold nanowires. Nat Mat 4(7):525–529.CrossRefGoogle Scholar
  37. 37.
    Marszalek PE, Greenleaf WJ, Li HB, Oberhauser AF, Fernandez JM (2000) Atomic force microscopy captures quantized plastic deformation in gold nanowires. Proc Natl Acad Sci USA 97(12):6282–6286.CrossRefGoogle Scholar
  38. 38.
    Marszalek PE, Li HB, Oberhauser AF, Fernandez JM (2002) Chair–boat transitions in single polysaccharide molecules observed with force-ramp AFM. Proc Natl Acad Sci USA 99(7):4278–4283.CrossRefGoogle Scholar
  39. 39.
    Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276(5315):1109–1112.CrossRefGoogle Scholar
  40. 40.
    Tan EPS, Goh CN, Sow CH, Lim CT (2005) Tensile test of a single nanofiber using an atomic force microscope tip. Appl Phys Lett 86(7).Google Scholar
  41. 41.
    Li XD, Hao HS, Murphy CJ, Caswell KK (2003) Nanoindentation of silver nanowires. Nano Lett 3(11):1495–1498.CrossRefGoogle Scholar
  42. 42.
    Feng G, Nix WD, Yoon Y, Lee CJ (2006) A study of the mechanical properties of nanowires using nanoindentation. J Appl Phys 99(7).Google Scholar
  43. 43.
    Waters JF, Guduru PR, Jouzi M, Xu JM, Hanlon T, Suresh S (2005) Shell buckling of individual multiwalled carbon nanotubes using nanoindentation. Appl Phys Lett 87(10).Google Scholar
  44. 44.
    Pugno N, Peng B, Espinosa HD (2005) Predictions of strength in MEMS components with defects—A novel experimental–theoretical approach. Int J Solids Struct 42(2):647–661.MATHCrossRefGoogle Scholar
  45. 45.
    Espinosa HD, Prorok BC, Fischer M (2003) A methodology for determining mechanical properties of freestanding thin films and MEMS materials. J Mech Phys Solids 51(1):47–67.CrossRefGoogle Scholar
  46. 46.
    Espinosa HD, Prorok BC, Peng B (2004) Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension. J Mech Phys Solids 52(3):667–689.CrossRefGoogle Scholar
  47. 47.
    Espinosa HD, Peng B (2005) A new methodology to investigate fracture toughness of freestanding MEMS and advanced materials in thin film form. J Microelectromech Sys 14(1):153–159.CrossRefGoogle Scholar
  48. 48.
    Uchic MD, Dimiduk DM, Florando JN, Nix WD (2004) Sample dimensions influence strength and crystal plasticity. Science 305(5686):986–989.CrossRefGoogle Scholar
  49. 49.
    Greer JR, Oliver WC, Nix WD (2005) Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater 53(6):1821–1830.CrossRefGoogle Scholar
  50. 50.
    Zhang H, Schuster BE, Wei Q, Ramesh KT (2006) The design of accurate micro-compression experiments. Scr Mater 54(2):181–186.CrossRefGoogle Scholar
  51. 51.
    Cheng S, Spencer JA, Milligan WW (2003) Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals. Acta Mater 51(15):4505–4518.CrossRefGoogle Scholar
  52. 52.
    Legros M, Dehm G, Balk TJ, Arzt E, Bostrom O, Gergaud P, Thomas O, Kaouache B (2003) Material Sciences Society Symposium Proceedings.Google Scholar
  53. 53.
    Minor AM, Morris JW, Stach EA (2001) Quantitative in situ nanoindentation in an electron microscope. Appl Phys Lett 79(11):1625–1627.CrossRefGoogle Scholar
  54. 54.
    Zhu Y, Moldovan N, Espinosa HD (2005) A microelectromechanical load sensor for in situ electron and x-ray microscopy tensile testing of nanostructures. Appl Phys Lett 86(1).Google Scholar
  55. 55.
    Espinosa HD, ZhuY, Moldovan N (2005) Design and operation of a MEMS-based material testing system for in-situ electron microscopy testing of nanostructures. Accepted by Journal of Microelectromechanical Systems.Google Scholar
  56. 56.
    Zhu Y, Corigliano A, Espinosa HD (2006) A thermal actuator for nanoscale in-situ microscopy testing: Design and characterization. J Micromech Microeng 16(2):242–253.CrossRefGoogle Scholar
  57. 57.
    Kahn H, Ballarini R, Mullen RL, Heuer AH (1999) Electrostatically actuated failure of microfabricated polysilicon fracture mechanics specimens. Proc R Soc Lond A Math Phys Sci 455(1990):3807–3823.CrossRefGoogle Scholar
  58. 58.
    Chu LL, Que L, Gianchandani YB (2002) Measurements of material properties using differential capacitive strain sensors. J Microelectromech Sys 11(5):489–498. Kluwer Academic Publisher.CrossRefGoogle Scholar
  59. 59.
    Senturia SD (2002) Microsystem design. Kluwer Academic Publisher.Google Scholar
  60. 60.
    Greek S, Ericson F, Johansson S, Furtsch M, Rump A (1999) Mechanical characterization of thick polysilicon films: Young’s modulus and fracture strength evaluated with microstructures. J Micromech Microeng 9(3):245–251.CrossRefGoogle Scholar
  61. 61.
    Sharpe WN, Jackson KM, Hemker KJ, Xie ZL (2001) Effect of specimen size on Young’s modulus and fracture strength of polysilicon. J Microelectromech Sys 10(3):317–326.CrossRefGoogle Scholar
  62. 62.
    Tsuchiya T, Tabata O, Sakata J, Taga Y (1998) Specimen size effect of tensile strength of surface-micromachined polycrystalline silicon thin films. JMicroelectromech Sys 7(1): 106–113.CrossRefGoogle Scholar
  63. 63.
    Espinosa HD, Berbenni S, Panico M, Schwarz KW (2005) An interpretation of size-scale plasticity in geometrically confined systems. Proc Natl Acad Sci USA 102(47):16933–16938.CrossRefGoogle Scholar
  64. 64.
    Huhtala M, Krasheninnikov AV, Aittoniemi J, Stuart SJ, Nordlund K, Kaski K (2004) Improved mechanical load transfer between shells of multiwalled carbon nanotubes. Phys Rev B 70(4).Google Scholar
  65. 65.
    Kis A, Csanyi G, Salvetat JP, Lee TN, Couteau E, Kulik AJ, Benoit W, Brugger J, Forro L (2004) Reinforcement of single-walled carbon nanotube bundles by intertube bridging. Nat Mat 3(3):153–157.CrossRefGoogle Scholar
  66. 66.
    Rueckes T, Kim K, Joselevich E, Tseng GY, Cheung CL, Lieber CM (2000) Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289(5476):94–97.CrossRefGoogle Scholar
  67. 67.
    Kim P, Lieber CM (1999) Nanotube nanotweezers. Science 286(5447):2148–2150.CrossRefGoogle Scholar
  68. 68.
    Sazonova V, Yaish Y, Ustunel H, Roundy D, Arias TA, Mceuen PL (2004) A tunable carbon nanotube electromechanical oscillator. Nature 431(7006):284–287.CrossRefGoogle Scholar
  69. 69.
    Kinaret JM, Nord T, Viefers S (2003) A carbon-nanotube-based nanorelay. Appl Phys Lett 82(8):1287–1289.CrossRefGoogle Scholar
  70. 70.
    Jang JE, Cha SN, Choi Y, Amaratunga GAJ, Kang DJ, Hasko DG, Jung JE, Kim JM (2005) Nanoelectromechanical switches with vertically aligned carbon nanotubes. Appl Phys Lett 87(16).Google Scholar
  71. 71.
    Ke CH, Espinosa HD (2006) In-situ Electron Microscopy Electro-Mechanical Characterization of a NEMS Bistable Device, Small 2(12):1484–1489.Google Scholar
  72. 72.
    Dequesnes M, Rotkin SV, Aluru NR (2002) Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches. Nanotechnology 13(1):120–131.CrossRefGoogle Scholar
  73. 73.
    Ke CH, Espinosa HD, Pugno N (2005) Numerical analysis of nanotube based NEMS devices—Part II: Role of finite kinematics, stretching and charge concentrations. Trans ASME-J App Mech 72(5):726–731.MATHGoogle Scholar
  74. 74.
    Ke CH, Espinosa HD (2005) Numerical analysis of nanotube-based NEMS devices—Part I: Electrostatic charge distribution on multiwalled nanotubes. Trans ASME-J App Mech 72(5):721–725.MATHGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2007

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations