# Contemporaneous Statistics for Estimation in Stochastic Actor-Oriented Co-evolution Models

- 117 Downloads

## Abstract

Stochastic actor-oriented models (SAOMs) can be used to analyse dynamic network data, collected by observing a network and a behaviour in a panel design. The parameters of SAOMs are usually estimated by the method of moments (MoM) implemented by a stochastic approximation algorithm, where statistics defining the moment conditions correspond in a natural way to the parameters. Here, we propose to apply the generalized method of moments (GMoM), using more statistics than parameters. We concentrate on statistics depending jointly on the network and the behaviour, because of the importance of their interdependence, and propose to add contemporaneous statistics to the usual cross-lagged statistics. We describe the stochastic algorithm developed to approximate the GMoM solution. A small simulation study supports the greater statistical efficiency of the GMoM estimator compared to the MoM.

## Keywords

generalized method of moments networks behaviour panel data stochastic actor-oriented model stochastic approximation## Notes

## References

- Amati, V., Schönenberger, F., & Snijders, T. A. (2015). Estimation of stochastic actor-oriented models for the evolution of networks by generalized method of moments.
*Journal de la Société Française de Statistique*,*156*(3), 140–165.Google Scholar - Block, P. (2015). Reciprocity, transitivity, and the mysterious three-cycle.
*Social Networks*,*40*, 163–173.CrossRefGoogle Scholar - Bollen, K. A., Kolenikov, S., & Bauldry, S. (2014). Model-implied instrumental variable—generalized method of moments (MIIV-GMM) estimators for latent variable models.
*Psychometrika*,*79*(1), 20–50.PubMedCrossRefPubMedCentralGoogle Scholar - Breusch, T., Qian, H., Schmidt, P., & Wyhowski, D. (1999). Redundancy of moment conditions.
*Journal of Econometrics*,*91*(1), 89–111.CrossRefGoogle Scholar - Burguete, J. F., Ronald Gallant, A., & Souza, G. (1982). On unification of the asymptotic theory of nonlinear econometric models.
*Econometric Reviews*,*1*(2), 151–190.CrossRefGoogle Scholar - Burk, W. J., Kerr, M., & Stattin, H. (2008). The co-evolution of early adolescent friendship networks, school involvement, and delinquent behaviors.
*Revue française de sociologie*,*49*(3), 499–522.CrossRefGoogle Scholar - Ebbers, J. J., & Wijnberg, N. M. (2010). Disentangling the effects of reputation and network position on the evolution of alliance networks.
*Strategic Organization*,*8*(3), 255–275.CrossRefGoogle Scholar - Gallant, A. R., Hsieh, D., & Tauchen, G. (1997). Estimation of stochastic volatility models with diagnostics.
*Journal of econometrics*,*81*(1), 159–192.CrossRefGoogle Scholar - Hall, A. R. (2005).
*Generalized method of moments*. Oxford: Oxford University Press.Google Scholar - Hansen, L. (1982). Large sample properties of generalized method of moments estimators.
*Econometrica*,*50*, 1029–1054.CrossRefGoogle Scholar - Hansen, L. P., & Singleton, K. J. (1982). Generalized instrumental variables estimation of nonlinear rational expectations models.
*Econometrica*,*50*(5), 1269–1286.CrossRefGoogle Scholar - Haynie, D. L., Doogan, N. J., & Soller, B. (2014). Gender, friendship networks, and delinquency: A dynamic network approach.
*Criminology*,*52*(4), 688–722.PubMedPubMedCentralCrossRefGoogle Scholar - Holland, P. W., & Leinhardt, S. (1977). A dynamic model for social networks.
*Journal of Mathematical Sociology*,*5*(1), 5–20.CrossRefGoogle Scholar - Hunter, D. R. (2007). Curved exponential family models for social networks.
*Social Networks*,*29*, 216–230.PubMedPubMedCentralCrossRefGoogle Scholar - Kim, J.-S., & Frees, E. W. (2007). Multilevel modeling with correlated effects.
*Psychometrika*,*72*(4), 505–533.CrossRefGoogle Scholar - Koskinen, J. H., & Snijders, T. A. B. (2007). Bayesian inference for dynamic social network data.
*Journal of Statistical Planning and Inference*,*13*, 3930–3938.CrossRefGoogle Scholar - Luce, R., & Suppes, P. (1965). Preference, utility, and subjective probability.
*Handbook of Mathematical Psychology*,*3*, 249–410.Google Scholar - Mátyás, L. (1999).
*Generalized method of moments estimation*. Cambridge: Cambridge University Press.CrossRefGoogle Scholar - McFadden, D. (1973).
*Conditional logit analysis of qualitative choice behavior*. Oakland: Institute of Urban and Regional Development, University of California.Google Scholar - McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks.
*Annual Review of Sociology*,*27*(1), 415–444.CrossRefGoogle Scholar - Meyer, C. D. (2000).
*Matrix analysis and applied linear algebra*. Philadelphia: SIAM.CrossRefGoogle Scholar - Michell, L., & West, P. (1996). Peer pressure to smoke: The meaning depends on the method.
*Health Education Research*,*11*(1), 39–49.CrossRefGoogle Scholar - Newey, W., & Windmeijer, F. (2009). Generalized method of moments with many weak moment conditions.
*Econometrica*,*77*(3), 687–719.CrossRefGoogle Scholar - Neyman, J., & Pearson, E. S. (1928). On the use and interpretation of certain test criteria for purposes of statistical inference: Part II.
*Biometrika*,*20*, 263–294.Google Scholar - Niezink, N. M. D., & Snijders, T. A. B. (2017). Co-evolution of social networks and continuous actor attributes.
*The Annals of Applied Statistics*,*11*(4), 1948–1973.CrossRefGoogle Scholar - Niezink, N. M. D., Snijders, T. A. B., & van Duijn, M. A. J. (2019). No longer discrete: Modeling the dynamics of social networks and continuous behavior.
*Sociological Methodology*. https://doi.org/10.1177/0081175019842263. CrossRefGoogle Scholar - Norris, J. R. (1997).
*Markov chains*. Cambridge: Cambridge University Press.CrossRefGoogle Scholar - Pearson, K. (1900). On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling.
*The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science*,*50*(302), 157–175.CrossRefGoogle Scholar - Pflug, G. C. (1990). Non-asymptotic confidence bounds for stochastic approximation algorithms with constant step size.
*Monatshefte für Mathematik*,*110*(3–4), 297–314.CrossRefGoogle Scholar - Polyak, B. T. (1990). A new method of stochastic approximation type.
*Automation and Remote Control*,*51*, 937–946.Google Scholar - Ripley, R. M., Snijders, T. A. B., Boda, Z., András, V., & Paulina, P. (2019).
*Manual for RSiena*. Groningen: ICS, Department of Sociology, University of Groningen.Google Scholar - Robbins, H., & Monro, S. (1951). A stochastic approximation method.
*The Annals of Mathematical Statistics*,*22*, 400–407.CrossRefGoogle Scholar - Ruppert, D. (1988).
*Efficient estimations from a slowly convergent Robbins–Monro process*. Technical report, Cornell University Operations Research and Industrial Engineering.Google Scholar - Schulte, M., Cohen, N. A., & Klein, K. J. (2012). The coevolution of network ties and perceptions of team psychological safety.
*Organization Science*,*23*(2), 564–581.CrossRefGoogle Scholar - Schweinberger, M., & Snijders, T. A. B. (2007). Markov models for digraph panel data: Monte Carlo-based derivative estimation.
*Computational Statistics & Data Analysis*,*51*(9), 4465–4483.CrossRefGoogle Scholar - Snijders, T. A. B. (1996). Stochastic actor-oriented models for network change.
*Journal of Mathematical Sociology*,*21*(1–2), 149–172.CrossRefGoogle Scholar - Snijders, T. A. B. (2001). The statistical evaluation of social network dynamics.
*Sociological Methodology*,*31*(1), 361–395.CrossRefGoogle Scholar - Snijders, T. A. B. (2005). Models for longitudinal network data. In P. J. C. Conte, J. Scott, & S. Wasserman (Eds.),
*Models and methods in social network analysis*(pp. 215–247). Cambridge: Cambridge University Press.CrossRefGoogle Scholar - Snijders, T. A. B. (2017a). Stochastic actor-oriented models for network dynamics.
*Annual Review of Statistics and Its Application*,*4*, 343–363.CrossRefGoogle Scholar - Snijders, T. A. B. (2017b).
*Siena algorithms*. Technical report, University of Groningen, University of Oxford. http://www.stats.ox.ac.uk/~snijders/siena/Siena_algorithms.pdf. - Snijders, T. A. B., Koskinen, J., & Schweinberger, M. (2010a). Maximum likelihood estimation for social network dynamics.
*The Annals of Applied Statistics*,*4*(2), 567–588.PubMedPubMedCentralCrossRefGoogle Scholar - Snijders, T. A. B., & Lomi, A. (2019). Beyond homophily: Incorporating actor variables in statistical network models.
*Network Science*,*7*(1), 1–19.CrossRefGoogle Scholar - Snijders, T. A. B., Steglich, C. E. G., & Schweinberger, M. (2007). Modeling the co-evolution of networks and behavior. In K. van Montfort, H. Oud, & A. Satorra (Eds.),
*Longitudinal models in the behavioral and related sciences*(pp. 41–71). Mahwah, NJ: Lawrence Erlbaum.Google Scholar - Snijders, T. A. B., Van de Bunt, G. G., & Steglich, C. E. G. (2010b). Introduction to stochastic actor-based models for network dynamics.
*Social Networks*,*32*(1), 44–60.CrossRefGoogle Scholar - Snijders, T. A. B., & van Duijn, M. A. J. (1997). Simulation for statistical inference in dynamic network models. In R. Conte, R. Hegselmann, & P. Terna (Eds.),
*Simulating social phenomena*(pp. 493–512). Berlin: Springer.CrossRefGoogle Scholar - Steglich, C. E. G., Snijders, T. A. B., & Pearson, M. (2010). Dynamic networks and behavior: Separating selection from influence.
*Sociological Methodology*,*40*(1), 329–393.CrossRefGoogle Scholar - Strang, G. (1976).
*Linear algebra and its applications*. New York: Academic Press.Google Scholar - Train, K. E. (2009).
*Discrete choice methods with simulation*. Cambridge: Cambridge University Press.CrossRefGoogle Scholar