Advertisement

Psychometrika

, Volume 83, Issue 4, pp 893–918 | Cite as

Generalized Processing Tree Models: Jointly Modeling Discrete and Continuous Variables

  • Daniel W. Heck
  • Edgar Erdfelder
  • Pascal J. Kieslich
Article

Abstract

Multinomial processing tree models assume that discrete cognitive states determine observed response frequencies. Generalized processing tree (GPT) models extend this conceptual framework to continuous variables such as response times, process-tracing measures, or neurophysiological variables. GPT models assume finite-mixture distributions, with weights determined by a processing tree structure, and continuous components modeled by parameterized distributions such as Gaussians with separate or shared parameters across states. We discuss identifiability, parameter estimation, model testing, a modeling syntax, and the improved precision of GPT estimates. Finally, a GPT version of the feature comparison model of semantic categorization is applied to computer-mouse trajectories.

Keywords

multinomial processing tree model discrete states mixture model cognitive modeling response times mouse-tracking 

Supplementary material

11336_2018_9622_MOESM1_ESM.pdf (184 kb)
Supplementary material 1 (pdf 184 KB)

References

  1. Batchelder, W. H. (1998). Multinomial processing tree models and psychological assessment. Psychological Assessment, 10, 331–344.  https://doi.org/10.1037/1040-3590.10.4.331.CrossRefGoogle Scholar
  2. Batchelder, W. H., & Alexander, G. E. (2013). Discrete-state models: Comment on Pazzaglia, Dube, and Rotello (2013). Psychological Bulletin, 139, 1204–1212.  https://doi.org/10.1037/a0033894.CrossRefPubMedGoogle Scholar
  3. Batchelder, W. H., & Riefer, D. M. (1990). Multinomial processing models of source monitoring. Psychological Review, 97, 548–564.  https://doi.org/10.1037/0033-295X.97.4.548.CrossRefGoogle Scholar
  4. Batchelder, W. H., & Riefer, D. M. (1999). Theoretical and empirical review of multinomial process tree modeling. Psychonomic Bulletin & Review, 6, 57–86.  https://doi.org/10.3758/BF03210812.CrossRefGoogle Scholar
  5. Behboodian, J. (1972). Information matrix for a mixture of two normal distributions. Journal of Statistical Computation and Simulation, 1, 295–314.  https://doi.org/10.1080/00949657208810024.CrossRefGoogle Scholar
  6. Bröder, A., Kellen, D., Schütz, J., & Rohrmeier, C. (2013). Validating a two-high-threshold measurement model for confidence rating data in recognition. Memory, 21, 916–944.  https://doi.org/10.1080/09658211.2013.767348.CrossRefPubMedGoogle Scholar
  7. Bröder, A., & Schütz, J. (2009). Recognition ROCs are curvilinear—or are they? On premature arguments against the two-high-threshold model of recognition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 587–606.  https://doi.org/10.1037/a0015279.CrossRefPubMedGoogle Scholar
  8. Casella, G., & Berger, R. L. (2002). Statistical inference. Pacific Grove, CA: Duxbury.Google Scholar
  9. Chernoff, H., & Lehmann, E. L. (1954). The use of maximum likelihood estimates in chi-square tests for goodness of fit. The Annals of Mathematical Statistics, 25, 579–586.  https://doi.org/10.1214/aoms/1177728726.CrossRefGoogle Scholar
  10. Coolin, A., Erdfelder, E., Bernstein, D. M., Thornton, A. E., & Thornton, W. L. (2015). Explaining individual differences in cognitive processes underlying hindsight bias. Psychonomic Bulletin & Review, 22, 328–348.  https://doi.org/10.3758/s13423-014-0691-5.CrossRefGoogle Scholar
  11. Dale, R., Kehoe, C., & Spivey, M. J. (2007). Graded motor responses in the time course of categorizing atypical exemplars. Memory & Cognition, 35, 15–28.  https://doi.org/10.3758/BF03195938.CrossRefGoogle Scholar
  12. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39, 1–38.Google Scholar
  13. Donkin, C., Nosofsky, R. M., Gold, J. M., & Shiffrin, R. M. (2013). Discrete-slots models of visual working-memory response times. Psychological Review, 120, 873–902.  https://doi.org/10.1037/a0034247.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dube, C., Starns, J. J., Rotello, C. M., & Ratcliff, R. (2012). Beyond ROC curvature: Strength effects and response time data support continuous-evidence models of recognition memory. Journal of Memory and Language, 67, 389–406.  https://doi.org/10.1016/j.jml.2012.06.002.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dzhaparidze, K., & Nikulin, M. (1974). On a modification of the standard statistics of Pearson. Theory of Probability & Its Applications, 19, 851–853.  https://doi.org/10.1137/1119098.CrossRefGoogle Scholar
  16. Efron, B., & Tibshirani, R. J. (1997). An introduction to the bootstrap. New York, NY: Chapman & Hall.Google Scholar
  17. Erdfelder, E., Auer, T.-S., Hilbig, B. E., Assfalg, A., Moshagen, M., & Nadarevic, L. (2009). Multinomial processing tree models: A review of the literature. Zeitschrift für Psychologie/Journal of Psychology, 217, 108–124.  https://doi.org/10.1027/0044-3409.217.3.108.CrossRefGoogle Scholar
  18. Forstmann, B. U., & Wagenmakers, E.-J. (2015). An introduction to model-based cognitive neuroscience. New York, NY: Springer.Google Scholar
  19. Freeman, J. B., & Ambady, N. (2010). MouseTracker: Software for studying real-time mental processing using a computer mouse-tracking method. Behavior Research Methods, 42, 226–241.  https://doi.org/10.3758/BRM.42.1.226.CrossRefPubMedGoogle Scholar
  20. Freeman, J. B., & Dale, R. (2013). Assessing bimodality to detect the presence of a dual cognitive process. Behavior Research Methods, 45, 83–97.  https://doi.org/10.3758/s13428-012-0225-x.CrossRefPubMedGoogle Scholar
  21. Frühwirth-Schnatter, S. (2006). Finite mixture and markov switching models. New York, NY: Springer.Google Scholar
  22. Heck, D. W., Arnold, N. R., & Arnold, D. (2018). TreeBUGS: An R package for hierarchical multinomial-processing-tree modeling. Behavior Research Methods, 50, 264–284.  https://doi.org/10.3758/s13428-017-0869-7.CrossRefPubMedGoogle Scholar
  23. Heck, D. W., & Erdfelder, E. (2016). Extending multinomial processing tree models to measure the relative speed of cognitive processes. Psychonomic Bulletin & Review, 23, 1440–1465.  https://doi.org/10.3758/s13423-016-1025-6.CrossRefGoogle Scholar
  24. Heck, D. W., & Erdfelder, E. (2017). Linking process and measurement models of recognition-based decisions. Psychological Review, 124, 442–471.  https://doi.org/10.1037/rev0000063.CrossRefPubMedGoogle Scholar
  25. Hu, X. (1999). Multinomial processing tree models: An implementation. Behavior Research Methods, Instruments, & Computers, 31, 689–695.  https://doi.org/10.3758/BF03200747.CrossRefGoogle Scholar
  26. Hu, X., & Batchelder, W. H. (1994). The statistical analysis of general processing tree models with the EM algorithm. Psychometrika, 59, 21–47.  https://doi.org/10.1007/bf02294263.CrossRefGoogle Scholar
  27. Kieslich, P. J., & Henninger, F. (2017). Mousetrap: An integrated, open-source mouse-tracking package. Behavior Research Methods, 49, 1652–1667.  https://doi.org/10.3758/s13428-017-0900-z.CrossRefPubMedGoogle Scholar
  28. Kieslich, P. J., Wulff, D. U., Henninger, F., Haslbeck, J. M. B., & Schulte-Mecklenbeck, M. (2016). Mousetrap: An R package for processing and analyzing mouse-tracking data.  https://doi.org/10.5281/zenodo.596640.
  29. Klauer, K. C. (2001). Theory of model testing and selection. In N. J. Smelser & P. B. Baltes (Eds.), International Encyclopedia of the Social & Behavioral Sciences (pp. 9927–9931). Oxford: Pergamon.  https://doi.org/10.1016/B0-08-043076-7/00599-4.CrossRefGoogle Scholar
  30. Klauer, K. C. (2010). Hierarchical multinomial processing tree models: A latent-trait approach. Psychometrika, 75, 70–98.  https://doi.org/10.1007/s11336-009-9141-0.CrossRefGoogle Scholar
  31. Koop, G. J., & Criss, A. H. (2016). The response dynamics of recognition memory: Sensitivity and bias. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42, 671–685.  https://doi.org/10.1037/xlm0000202.CrossRefPubMedGoogle Scholar
  32. Luce, R. D. (1986). Response times: Their role in inferring elementary mental organization. New York, NY: Oxford University Press.Google Scholar
  33. Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An open-source, graphical experiment builder for the social sciences. Behavior Research Methods, 44, 314–324.  https://doi.org/10.3758/s13428-011-0168-7.CrossRefPubMedGoogle Scholar
  34. Matzke, D., Dolan, C. V., Batchelder, W. H., & Wagenmakers, E.-J. (2015). Bayesian estimation of multinomial processing tree models with heterogeneity in participants and items. Psychometrika, 80, 205–235.  https://doi.org/10.1007/s11336-013-9374-9.CrossRefPubMedGoogle Scholar
  35. Michalkiewicz, M., & Erdfelder, E. (2016). Individual differences in use of the recognition heuristic are stable across time, choice objects, domains, and presentation formats. Memory & Cognition, 44, 454–468.  https://doi.org/10.3758/s13421-015-0567-6.CrossRefGoogle Scholar
  36. Miller, J. (2006). A likelihood ratio test for mixture effects. Behavior Research Methods, 38, 92–106.  https://doi.org/10.3758/BF03192754.CrossRefPubMedGoogle Scholar
  37. Moore, D. S., & Spruill, M. C. (1975). Unified large-sample theory of general chi-squared statistics for tests of fit. The Annals of Statistics, 3, 599–616.CrossRefGoogle Scholar
  38. Moshagen, M. (2010). multiTree: A computer program for the analysis of multinomial processing tree models. Behavior Research Methods, 42, 42–54.  https://doi.org/10.3758/BRM.42.1.42.CrossRefPubMedGoogle Scholar
  39. Myung, I. J., Pitt, M. A., & Kim, W. (2005). Model evaluation, testing and selection. In K. Lamberts & R. Goldstone (Eds.), Handbook of cognition (pp. 422–436). Thousand Oaks, CA: Sage.CrossRefGoogle Scholar
  40. Nikulin, M. (1973). Chi-square test for continuous distributions with shift and scale parameters. Theory of Probability & Its Applications, 18, 559–568.  https://doi.org/10.1137/1118069.CrossRefGoogle Scholar
  41. Ollman, R. (1966). Fast guesses in choice reaction time. Psychonomic Science, 6, 155–156.  https://doi.org/10.3758/BF03328004.CrossRefGoogle Scholar
  42. Province, J. M., & Rouder, J. N. (2012). Evidence for discrete-state processing in recognition memory. Proceedings of the National Academy of Sciences, 109, 14357–14362.  https://doi.org/10.1073/pnas.1103880109.CrossRefGoogle Scholar
  43. Ranger, J., Kuhn, J.-T., & Gaviria, J.-L. (2015). A race model for responses and response times in tests. Psychometrika, 80, 791–810.  https://doi.org/10.1007/s11336-014-9427-8.CrossRefPubMedGoogle Scholar
  44. Rao, K. C., & Robson, B. S. (1974). A chi-square statistic for goodness-of-fit tests within the exponential family. Communications in Statistics, 3, 1139–1153.  https://doi.org/10.1080/03610927408827216.CrossRefGoogle Scholar
  45. Read, T. R. C., & Cressie, N. A. C. (1988). Goodness-of-fit statistics for discrete multivariate data. New York, NY: Springer.CrossRefGoogle Scholar
  46. Rouder, J. N., & Morey, R. D. (2009). The nature of psychological thresholds. Psychological Review, 116, 655–660.  https://doi.org/10.1037/a0016413.CrossRefPubMedGoogle Scholar
  47. Rouder, J. N., Province, J. M., Morey, R. D., Gomez, P., & Heathcote, A. (2015). The lognormal race: A cognitive-process model of choice and latency with desirable psychometric properties. Psychometrika, 80, 491–513.  https://doi.org/10.1007/s11336-013-9396-3.CrossRefPubMedGoogle Scholar
  48. Singmann, H., & Kellen, D. (2013). MPTinR: Analysis of multinomial processing tree models in R. Behavior Research Methods, 45, 560–575.  https://doi.org/10.3758/s13428-012-0259-0.CrossRefPubMedGoogle Scholar
  49. Sloman, S. A. (1996). The empirical case for two systems of reasoning. Psychological Bulletin, 119, 3–22.  https://doi.org/10.1037/0033-2909.119.1.3.CrossRefGoogle Scholar
  50. Smith, E. E., Shoben, E. J., & Rips, L. J. (1974). Structure and process in semantic memory: A featural model for semantic decisions. Psychological Review, 81, 214–241.  https://doi.org/10.1037/h0036351.CrossRefGoogle Scholar
  51. Snodgrass, J. G., & Corwin, J. (1988). Pragmatics of measuring recognition memory: Applications to dementia and amnesia. Journal of Experimental Psychology: General, 117, 34–50.  https://doi.org/10.1037/0096-3445.117.1.34.CrossRefGoogle Scholar
  52. Swagman, A. R., Province, J. M., & Rouder, J. N. (2015). Performance on perceptual word identification is mediated by discrete states. Psychonomic Bulletin & Review, 22, 265–273.  https://doi.org/10.3758/s13423-014-0670-x.CrossRefGoogle Scholar
  53. Teicher, H. (1967). Identifiability of mixtures of product measures. The Annals of Mathematical Statistics, 38, 1300–1302.  https://doi.org/10.2307/2238855.CrossRefGoogle Scholar
  54. Tuerlinckx, F., & Boeck, P. D. (2005). Two interpretations of the discrimination parameter. Psychometrika, 70, 629–650.  https://doi.org/10.1007/s11336-000-0810-3.CrossRefGoogle Scholar
  55. van der Maas, H. L. J., Molenaar, D., Maris, G., Kievit, R. A., & Borsboom, D. (2011). Cognitive psychology meets psychometric theory: On the relation between process models for decision making and latent variable models for individual differences. Psychological Review, 118, 339–356.  https://doi.org/10.1037/a0022749.CrossRefPubMedGoogle Scholar
  56. Van Zandt, T. (2000). How to fit a response time distribution. Psychonomic Bulletin & Review, 7, 424–465.  https://doi.org/10.3758/BF03214357.CrossRefGoogle Scholar
  57. Voinov, V., Nikulin, M. S., & Balakrishnan, N. (2013). Chi-squared goodness of fit tests with applications. Waltham, MA: Academic Press.Google Scholar
  58. Wagenmakers, E.-J., & Farrell, S. (2004). AIC model selection using Akaike weights. Psychonomic Bulletin & Review, 11, 192–196.CrossRefGoogle Scholar
  59. Yakowitz, S. J., & Spragins, J. D. (1968). On the identifiability of finite mixtures. The Annals of Mathematical Statistics, 39, 209–214.  https://doi.org/10.2307/2238925.CrossRefGoogle Scholar
  60. Yantis, S., Meyer, D. E., & Smith, J. K. (1991). Analyses of multinomial mixture distributions: New tests for stochastic models of cognition and action. Psychological Bulletin, 110, 350–374.  https://doi.org/10.1037/0033-2909.110.2.350.CrossRefPubMedGoogle Scholar

Copyright information

© The Psychometric Society 2018

Authors and Affiliations

  • Daniel W. Heck
    • 1
  • Edgar Erdfelder
    • 1
  • Pascal J. Kieslich
    • 1
  1. 1.Department of PsychologyUniversity of MannheimMannheimGermany

Personalised recommendations