Advertisement

The Use of an Identifiability-Based Strategy for the Interpretation of Parameters in the 1PL-G and Rasch Models

  • Paula FariñaEmail author
  • Jorge González
  • Ernesto San Martín
Article
  • 71 Downloads

Abstract

Using the well-known strategy in which parameters are linked to the sampling distribution via an identification analysis, we offer an interpretation of the item parameters in the one-parameter logistic with guessing model (1PL-G) and the nested Rasch model. The interpretations are based on measures of informativeness that are defined in terms of odds of correctly answering the items. It is shown that the interpretation of what is called the difficulty parameter in the random-effects 1PL-G model differs from that of the item parameter in a random-effects Rasch model. It is also shown that the traditional interpretation of the guessing parameter in the 1PL-G model changes, depending on whether fixed-effects or random-effects versions of both models are considered.

Keywords

parameter interpretation identifiability IRT models 

Notes

Supplementary material

11336_2018_9659_MOESM1_ESM.r (4 kb)
Supplementary material 1 (R 3 KB)

References

  1. Agresti, A. (2002). Categorical Data Analysis (2nd ed.). New York: Wiley.CrossRefGoogle Scholar
  2. Andrich, D., & Marais, (2014). Person proficiency estimates in the dichotomous rasch model when random guessing is removed from difficulty estimates of multiple choice items. Applied Psycological Measurement, 38, 432–449.CrossRefGoogle Scholar
  3. Andrich, D., Marais, I., & Humphry, S. (2012). Using a theorem by Andersen and the dichotomous Rasch model to asses the presence of random guessing in multiple choice items. Journal of Educational and Behavioral Statistics, 37(3), 417–442.CrossRefGoogle Scholar
  4. Andrich, D., Marais, I., & Humphry, S. (2016). Controlling guessing bias in the dichotomous Rasch model applied to a large-scale, vertically scaled testing program. Educational and Psycological Measurement, 76, 412–435.CrossRefGoogle Scholar
  5. Birnbaum, A. (1968). Some latent trait models. In F. Lord & M. Novick (Eds.), Statistical theories of mental test scores. Reading, MA: Addison-Wesley.Google Scholar
  6. De Boeck, P., & Wilson, M. (2004). Explanatory item response models: A generalized linear and nonlinear approach. New York: Springer.CrossRefGoogle Scholar
  7. Embretson, S., & Reise, S. (2000). Item response theory for psychologists. Mahwah: Lawrence Erlbaum Associates.Google Scholar
  8. Hambleton, R., & Cook, L. (1977). Latent trait models and their use in the analyses of educational test data. Journal of Educational Measurement, 14, 75–96.CrossRefGoogle Scholar
  9. Holland, P. (1990). On the sampling theory foundations of item response theory models. Psychometrika, 55(4), 577–601.CrossRefGoogle Scholar
  10. Lindsay, B., Clogg, C. C., & Grego, J. (1991). Semiparametric estimation in the Rasch model and related exponential response models, including a simple latent class model for item analysis. Journal of the American Statistical Association, 86(413), 96–107.CrossRefGoogle Scholar
  11. Lord, F. (1968). An analysis of the verbal scholastic aptitude test using Birnbaum’s three-parameter logistic model. Educational and Psychological Measurement, 28, 989–1020.CrossRefGoogle Scholar
  12. Lord, F. (1970). Item characteristic curves as estimated without knowledge of their mathematical form—A confrontation of Birnbaum’s logistic model. Psychometrika, 35, 43–50.CrossRefGoogle Scholar
  13. Maris, G., & Bechger, T. (2009). On interpreting the model parameters for the three parameter logistic model. Measurement: Interdisciplinary Research and Perspectives, 7, 75–88.Google Scholar
  14. Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. The Danish Institute for Educational Research (Expanded edition, 1980). Chicago: The University Chicago Press.Google Scholar
  15. Rigdom, S., & Tsutakawa, R. (1983). Parameter estimation in latent trait models. Psychometrika, 48(4), 567–574.CrossRefGoogle Scholar
  16. Rizopoulos, D. (2006). ltm: An R package for latent variable modeling and item response theory analyses. Journal of Statistical Software, 17(5), 1–25.CrossRefGoogle Scholar
  17. San Martín, E. (2016). Identification of item response theory models. In W. van der Linden (Ed.), Handbook of item response theory (Vol. 2, pp. 127–150). Boca Raton: Chapman and Hall/CRC.Google Scholar
  18. San Martín, E., & De Boeck, P. (2015). What do you mean by a difficult item? On the interpretation of the difficulty parameter in a Rasch Model. In R. Millsap, D. Bolt, L. van der Ark, & W. C. Wang (Eds.), Quantitative psychology research (Vol. 1, pp. 1–14). Berlin: Springer International Publishing.Google Scholar
  19. San Martín, E., Del Pino, G., & De Boeck, P. (2006). IRT models for ability-based guessing. Applied Psychological Measurement, 30(3), 183–203.CrossRefGoogle Scholar
  20. San Martín, E., González, J., & Tuerlinckx, F. (2009). Identified parameters, parameters of interest and their relationships. Measurement: Interdisciplinary Research and Perspective, 7, 97–105.Google Scholar
  21. San Martín, E., González, J., & Tuerlinckx, F. (2015). On the unidentifiability of the fixed-effects 3PL model. Psychometrika, 80(2), 450–467.CrossRefGoogle Scholar
  22. San Martín, E., Rolin, J., & Castro, L. (2013). Identification of the 1PL model with guessing parameter: Parametric and semiparametric results. Psychometrika, 78(2), 341–379.CrossRefGoogle Scholar
  23. Waller, M. (1974). Removing the effects of random guessing from latent trait ability estimates (Research Bulletin RB-74-32). Educational Test Service, Princeton, NJ.Google Scholar
  24. Weitzman, R. (1996). The Rasch model plus guessing. Educational and Psychological Measurement, 56(5), 779–790.CrossRefGoogle Scholar
  25. Wright, B. (1989). Dichotomous Rasch model derived from counting right answers: Raw scores as sufficient statistics. Rasch Measurement Transactions, 3(2), 62.Google Scholar
  26. Wu, H. (2016). A note on the identifiability of fixed-effect 3PL-models. Psychometrika, 81(4), 1093–1097.CrossRefGoogle Scholar

Copyright information

© The Psychometric Society 2019

Authors and Affiliations

  1. 1.Faculty of Engineering and ScienceUniversidad Diego PortalesSantiagoChile
  2. 2.Faculty of MathematicsPontificia Universidad Católica de ChileMacul, SantiagoChile
  3. 3.The Economics School of LouvainUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations