On the Identifiability of Diagnostic Classification Models
- 94 Downloads
Abstract
This paper establishes fundamental results for statistical analysis based on diagnostic classification models (DCMs). The results are developed at a high level of generality and are applicable to essentially all diagnostic classification models. In particular, we establish identifiability results for various modeling parameters, notably item response probabilities, attribute distribution, and Q-matrix-induced partial information structure. These results are stated under a general setting of latent class models. Through a nonparametric Bayes approach, we construct an estimator that can be shown to be consistent when the identifiability conditions are satisfied. Simulation results show that these estimators perform well under various model settings. We also apply the proposed method to a dataset from the National Epidemiological Survey on Alcohol and Related Conditions (NESARC).
Keywords
identifiability diagnostic classification models Dirichlet allocationNotes
Acknowledgements
This research is supported in part by NSF IIS-1633360 and SES-1826540.
Supplementary material
References
- Allman, E. S., Matias, C., & Rhodes, J. A. (2009). Identifiability of parameters in latent structure models with many observed variables. The Annals of Statistics, 37, 3099–3132.CrossRefGoogle Scholar
- Chen, Y., Culpepper, S. A., Chen, Y., & Douglas, J. (2018). Bayesian estimation of the DINA \(Q\) matrix. Psychometrika, 83, 89–108.CrossRefGoogle Scholar
- Chen, Y., Liu, J., Xu, G., & Ying, Z. (2015a). Statistical analysis of \(Q\)-matrix based diagnostic classification models. Journal of the American Statistical Association, 110, 850–866.CrossRefGoogle Scholar
- Chen, Y., Liu, J., & Ying, Z. (2015b). Online item calibration for \(Q\)-matrix in CD-CAT. Applied Psychological Measurement, 39, 5–15.CrossRefGoogle Scholar
- Chiu, C.-Y., Douglas, J. A., & Li, X. (2009). Cluster analysis for cognitive diagnosis: Theory and applications. Psychometrika, 74, 633.CrossRefGoogle Scholar
- De La Torre, J. (2009). DINA model and parameter estimation: A didactic. Journal of educational and behavioral statistics, 34, 115–130.CrossRefGoogle Scholar
- De La Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76, 179–199.CrossRefGoogle Scholar
- De La Torre, J., & Douglas, J. A. (2004). Higher order latent trait models for cognitive diagnosis. Psychometrika, 69, 333–353.CrossRefGoogle Scholar
- DeCarlo, L. T. (2011). On the analysis of fraction subtraction data: The DINA model, classification, latent class sizes, and the \(Q\)-matrix. Applied Psychological Measurement, 35, 8–26.CrossRefGoogle Scholar
- DiBello, L. V., Stout, W. F., & Roussos, L. A. (1995). Unified cognitive/psychometric diagnostic assessment likelihood-based classification techniques. In S. F. Chipman, P. D. Nichols, & R. L. Brennan (Eds.), Cognitively diagnostic assessment (pp. 361–389). Hillsdale, NJ: Erlbaum.Google Scholar
- Dunson, D., & Xing, C. (2009). Nonparametric Bayes modeling of multivariate categorical data. Journal of the American Statistical Association, 104, 1042–1051.CrossRefGoogle Scholar
- Grant, B. F., Kaplan, K., Shepard, J., & Moore, T. (2003). Source and accuracy statement for wave 1 of the 2001–2002 national epidemiologic survey on alcohol and related conditions. Bethesda, MD: National Institute on Alcohol Abuse and Alcoholism.Google Scholar
- Gu, Y., & Xu, G. (2018). The sufficient and necessary condition for the identifiability and estimability of the DINA model. Psychometrika. https://doi.org/10.1007/s11336-018-9619-8.
- Gu, Y., Liu, J., Xu, G., & Ying, Z. (2018). Hypothesis testing of the \(Q\)-matrix. Psychometrika, 83, 515–537.CrossRefGoogle Scholar
- Hartz, S. M. (2002). A Bayesian framework for the unified model for assessing cognitive abilities: Blending theory with practicality. Doctoral Dissertation, University of Illinois, Urbana-Champaign.Google Scholar
- Henson, R., Templin, J., & Willse, J. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74, 191–210.CrossRefGoogle Scholar
- Iza, M., Wall, M., Heimberg, R., Rodebaugh, T., Schneier, F., Liu, S.-M., et al. (2014). Latent structure of social fears and social anxiety disorders. Psychological medicine, 44, 361–370.CrossRefGoogle Scholar
- Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25, 258–272.CrossRefGoogle Scholar
- Kruskal, J. (1977). Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra and its Application, 18, 95–138.CrossRefGoogle Scholar
- Leighton, J. P., Gierl, M. J., & Hunka, S. M. (2004). The attribute hierarchy model for cognitive assessment: A variation on Tatsuoka’s rule-space approach. Journal of Educational Measurement, 41, 205–237.CrossRefGoogle Scholar
- Liu, J., Xu, G., & Ying, Z. (2012). Data-driven learning of \(Q\)-matrix. Applied Psychological Measurement, 36, 609–618.Google Scholar
- Liu, J., Xu, G., & Ying, Z. (2013). Theory of the self-learning \(Q\)-matrix. Bernoulli: Official Journal of the Bernoulli Society for Mathematical Statistics and Probability, 19, 1790.CrossRefGoogle Scholar
- Roussos, L. A., Templin, J. L., & Henson, R. A. (2007). Skills diagnosis using IRT-based latent class models. Journal of Educational Measurement, 44, 293–311.CrossRefGoogle Scholar
- Rupp, A. A., & Templin, J. (2008a). The effects of \(Q\)-matrix misspecification on parameter estimates and classification accuracy in the DINA model. Educational and Psychological Measurement, 68, 78–96.CrossRefGoogle Scholar
- Rupp, A. A., & Templin, J. L. (2008b). Unique characteristics of diagnostic classification models: A comprehensive review of the current state-of-the-art. Measurement: Interdisciplinary Research and Perspective, 6, 219–262.Google Scholar
- Rupp, A. A., Templin, J., & Henson, R. A. (2010). Diagnostic measurement: Theory, methods, and applications. New York: Guilford Press.Google Scholar
- Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica, 4, 639–650.Google Scholar
- Stout, W. (2007). Skills diagnosis using IRT-based continuous latent trait models. Journal of Educational Measurement, 44, 313–324.CrossRefGoogle Scholar
- Tatsuoka, K. K. (1985). A probabilistic model for diagnosing misconceptions in the pattern classification approach. Journal of Educational Statistics, 12, 55–73.CrossRefGoogle Scholar
- Tatsuoka, K. K. (2009). Cognitive assessment: An introduction to the rule space method. Boca Raton: CRC Press.Google Scholar
- Templin, J., He, X., Roussos, L., & Stout, W. (2003). The pseudo-item method: a simple technique for analysis of polytomous data with the fusion model. External diagnostic research group technical report.Google Scholar
- Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11, 287–305.CrossRefGoogle Scholar
- Van der Vaart, A. W. (1998). Asymptotic statistics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
- von Davier, M. (2005). A general diagnosis model applied to language testing data. Research report: Educational testing service.Google Scholar
- Vonesh, E. F., & Chinchilli, V. G. (1997). Linear and nonlinear models for the analysis of repeated measurements. London: Chapman and Hall.Google Scholar
- Walker, S. G. (2007). Sampling the dirichlet mixture model with slices. Communications in Statistics-Simulation and Computation, 36, 45–54.CrossRefGoogle Scholar
- Xu, G. (2017). Identifiability of restricted latent class models with binary responses. The Annals of Statistics, 45, 675–707.CrossRefGoogle Scholar
- Xu, G., & Shang, Z. (2018). Identifying latent structures in restricted latent class models. Journal of the American Statistical Association, 113(523), 1284–1295.CrossRefGoogle Scholar
- Xu, G., & Zhang, S. (2016). Identifiability of diagnostic classification models. Psychometrika, 81, 625–649.CrossRefGoogle Scholar