Advertisement

Average Effects Based on Regressions with a Logarithmic Link Function: A New Approach with Stochastic Covariates

  • Christoph KieferEmail author
  • Axel Mayer
Article
  • 30 Downloads

Abstract

Researchers often use regressions with a logarithmic link function to evaluate the effects of a treatment on a count variable. In order to judge the average effectiveness of the treatment on the original count scale, they compute average treatment effects, which are defined as the average difference between the expected outcomes under treatment and under control. Current practice is to evaluate the expected differences at every observation and use the sample mean of these differences as a point estimate of the average effect. The standard error for this average effect estimate is based on the implicit assumption that covariate values are fixed, i.e., do not vary across different samples. In this paper, we present a new way of analytically computing average effects based on regressions with log link using stochastic covariates and develop new formulas to obtain standard errors for the average effect. In a simulation study, we evaluate the statistical performance of our new estimator and compare it with the traditional approach. Our findings suggest that the new approach gives unbiased effect estimates and standard errors and outperforms the traditional approach when strong interaction and/or a skewed covariate is present.

Keywords

negative binomial regression model average treatment effects stochastic covariates count data 

Notes

Supplementary material

11336_2018_9654_MOESM1_ESM.pdf (286 kb)
Supplementary material 1 (pdf 285 KB)

References

  1. Agresti, A. (2007). An introduction to categorical data analysis (2nd ed.). Hoboken, NJ: Wiley.  https://doi.org/10.1002/0470114754.CrossRefGoogle Scholar
  2. Basu, A., & Rathouz, P. J. (2005). Estimating marginal and incremental effects on health outcomes using flexible link and variance function models. Biostatistics, 6(1), 93–109.  https://doi.org/10.1093/biostatistics/kxh020.CrossRefPubMedGoogle Scholar
  3. Boos, D. D., & Stefanski, L. A. (2013). Essential statistical inference—Theory and methods. New York, NY: Springer.CrossRefGoogle Scholar
  4. Chen, X. (2006). The adjustment of random baseline measurements in treatment effect estimation. Journal of Statistical Planning and Inference, 136, 4161–4175.  https://doi.org/10.1016/j.jspi.2005.08.046.CrossRefGoogle Scholar
  5. Collins, L. M., Schafer, J. L., & Kam, C. M. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6(4), 330–351.  https://doi.org/10.1037//1082-989x.6.4.330-351.CrossRefPubMedGoogle Scholar
  6. Coxe, S., West, S. G., & Aiken, L. S. (2009). The analysis of count data: A gentle introduction to Poisson regression and its alternatives. Journal of Personality Assessment, 91(2), 121–136.  https://doi.org/10.1080/00223890802634175.CrossRefPubMedGoogle Scholar
  7. Crager, M. R. (1987). Analysis of covariance in parallel-group clinical trials with pretreatment baselines. Biometrics, 43, 895–901.  https://doi.org/10.2307/2531543.CrossRefPubMedGoogle Scholar
  8. Dowd, B. E., Greene, W. H., & Norton, E. C. (2014). Computation of standard errors. Health Services Research, 49(2), 731–750.  https://doi.org/10.1111/1475-6773.12122.CrossRefPubMedGoogle Scholar
  9. Gail, M. H., Wieand, S., & Piantadosi, S. (1984). Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates. Biometrika, 71, 431–444.  https://doi.org/10.1093/biomet/71.3.431.CrossRefGoogle Scholar
  10. Gardner, W., Mulvey, E. P., & Shaw, E. C. (1995). Regression analyses of counts and rates: Poisson, overdispersed Poisson, and negative binomial models. Psychological Bulletin, 118(3), 392–404.  https://doi.org/10.1037//0033-2909.118.3.392.CrossRefPubMedGoogle Scholar
  11. Gatsonis, C., & Sampson, A. R. (1989). Multiple correlation: Exact power and sample size calculations. Psychological Bulletin, 106, 516–524.CrossRefPubMedGoogle Scholar
  12. Graham, J. W. (2012). Missing data: Analysis and design. New York, NY: Springer.CrossRefGoogle Scholar
  13. Greene, W. (2007). Econometric analysis. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
  14. Helseth, S. A., Waschbusch, D. A., Gnagy, E. M., Onyango, A. N., Burrows-MacLean, L., Fabiano, G. A., et al. (2015). Effects of behavioral and pharmacological therapies on peer reinforcement of deviancy in children with ADHD-only, ADHD and conduct problems, and controls. Journal of Consulting and Clinical Psychology, 83(2), 280–292.  https://doi.org/10.1037/a0038505.CrossRefPubMedGoogle Scholar
  15. Hilbe, J. M. (2007). Negative binomial regression. Cambridge: New York, NY.CrossRefGoogle Scholar
  16. Hittner, J. B., Owens, E. C., & Swickert, R. J. (2016). Influence of social settings on risky sexual behavior. SAGE Open, 6(1).  https://doi.org/10.1177/2158244016629187.
  17. Huber, P. J. (1964). Robust estimation of a location parameter. The Annals of Mathematical Statistics, 35(1), 73–101.  https://doi.org/10.1007/978-1-4612-4380-9_35.CrossRefGoogle Scholar
  18. Huber, P. J., & Ronchetti, E. M. (2009). Robust statistics. New York, NY: Wiley.CrossRefGoogle Scholar
  19. Imbens, G. W., & Rubin, D. B. (2015). Causal inference in statistics, social, and biomedical sciences. Cambridge: Cambridge University Press.  https://doi.org/10.1017/cbo9781139025751.CrossRefGoogle Scholar
  20. Jensen, J. L. W. V. (1906). Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Mathematica, 30, 175–193.  https://doi.org/10.1007/bf02418571.CrossRefGoogle Scholar
  21. Johns, G., & Al Hajj, R. (2016). Frequency versus time lost measures of absenteeism: Is the voluntariness distinction an urban legend. Journal of Organizational Behavior, 37(3), 456–479.  https://doi.org/10.1002/job.2055.CrossRefGoogle Scholar
  22. Johnson, P. O., & Neyman, J. (1936). Tests of certain linear hypotheses and their application to some educational problems. Statistical Research Memoirs, 1, 57–93.Google Scholar
  23. Kenny, T. E., Van Wijk, M., Singleton, C., & Carter, J. C. (2018). An examination of the relationship between binge eating disorder and insomnia symptoms. European Eating Disorders Review, 26(3), 186–196.  https://doi.org/10.1002/erv.2587.CrossRefPubMedGoogle Scholar
  24. Kröhne, U. (2009). Estimation of average causal effects in quasi-experimental designs: Non-linear constraints in structural equation models. Unpublished doctoral dissertation, Friedrich-Schiller-University Jena, Germany.Google Scholar
  25. Layland, E. K., Calhoun, B. H., Russell, M. A., & Maggs, J. L. (2018). Is alcohol and other substance use reduced when college students attend alcohol-free programs? Evidence from a measurement burst design before and after legal drinking age. Prevention Science, 1–11.  https://doi.org/10.1007/s11121-018-0877-6.
  26. Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data (2nd ed.). Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  27. Liu, Y., West, S. G., Levy, R., & Aiken, L. S. (2017). Tests of simple slopes in multiple regression models with an interaction: Comparison of four approaches. Multivariate Behavioral Research, 52(4), 1–20.  https://doi.org/10.1080/00273171.2017.1309261.CrossRefGoogle Scholar
  28. Long, J. S. (1997). Advanced quantitative techniques in the social sciences. Regression models for categorical and limited dependent variables (Vol. 7). Thousand Oaks, CA: Sage Publications.Google Scholar
  29. Lord, D. (2006). Modeling motor vehicle crashes using Poisson-gamma models: Examining the effects of low sample mean values and small sample size on the estimation of the fixed dispersion parameter. Accident Analysis and Prevention, 38(4), 751–766.  https://doi.org/10.1016/j.aap.2006.02.001.CrossRefPubMedGoogle Scholar
  30. Macdonald, K., Germine, L., Anderson, A., Christodoulou, J., & McGrath, L. M. (2017). Dispelling the myth: Training in education or neuroscience decreases but does not eliminate beliefs in neuromyths. Frontiers in Psychology, 8, 1314.  https://doi.org/10.3389/fpsyg.2017.01314.CrossRefPubMedGoogle Scholar
  31. Mayer, A., Dietzfelbinger, L., Rosseel, Y., & Steyer, R. (2016). The EffectLiteR approach for analyzing average and conditional effects. Multivariate Behavioral Research, 51, 374–391.  https://doi.org/10.1080/00273171.2016.1151334.CrossRefPubMedGoogle Scholar
  32. Mayer, A., Thoemmes, F., Rose, N., Steyer, R., & West, S. G. (2014). Theory and analysis of total, direct and indirect causal effects. Multivariate Behavioral Research, 49(5), 425–442.  https://doi.org/10.1080/00273171.2014.931797.CrossRefPubMedGoogle Scholar
  33. Molenberghs, G., Fitzmaurice, G., Kenward, M. G., Tsiatis, A., & Verbeke, G. (Eds.). (2014). Handbook of missing data methodology. Boca Raton, FL: CRC Press.  https://doi.org/10.1201/b17622.
  34. Muench, F., van Stolk-Cooke, K., Kuerbis, A., Stadler, G., Baumel, A., Shao, S., et al. (2017). A randomized controlled pilot trial of different mobile messaging interventions for problem drinking compared to weekly drink tracking. PLoS ONE, 12(2), e0167900.  https://doi.org/10.1371/journal.pone.0167900.CrossRefPubMedGoogle Scholar
  35. Nagengast, B. (2006). Standard errors of ACE estimates: Comparing adjusted group means against the adjusted grand mean. A simulation study. Unpublished diploma thesis, Friedrich-Schiller-University Jena, Germany.Google Scholar
  36. Ng, V. K. Y., & Cribbie, R. A. (2016). Using the gamma generalized linear model for modeling continuous, skewed and heteroscedastic outcomes in psychology. Current Psychology, 36(2), 1–11.  https://doi.org/10.1007/s12144-015-9404-0.Google Scholar
  37. Pelham, W. E, Jr., Fabiano, G. A., Waxmonsky, J. G., Greiner, A. R., Gnagy, E. M., Pelham, W. E, I. I. I., et al. (2016). Treatment sequencing for childhood ADHD: A multiple-randomization study of adaptive medication and behavioral interventions. Journal of Clinical Child & Adolescent Psychology, 45(4), 396–415.  https://doi.org/10.1080/15374416.2015.1105138.CrossRefGoogle Scholar
  38. Precht, L., Keinath, A., & Krems, J. F. (2017). Effects of driving anger on driver behavior—Results from naturalistic driving data. Transportation Research Part F: Traffic Psychology and Behaviour, 45, 75–92.  https://doi.org/10.1016/j.trf.2016.10.019.CrossRefGoogle Scholar
  39. R Core Team. (2018). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved October 06, 2018, from http://www.R-project.org/.
  40. Raykov, T., & Marcoulides, G. A. (2004). Using the delta method for approximate interval estimation of parameter functions in SEM. Structural Equation Modeling, 11, 621–637.  https://doi.org/10.1207/s15328007sem1104_7.CrossRefGoogle Scholar
  41. Rencher, A. C., & Schaalje, G. B. (2007). Linear models in statistics (2nd ed.). New York, NY: Wiley.CrossRefGoogle Scholar
  42. Rosenbaum, P. R. (2007). Interference between units in randomized experiments. Journal of the American Statistical Association, 102(477), 191–200.  https://doi.org/10.1198/016214506000001112.CrossRefGoogle Scholar
  43. Rosset, S., & Tibshirani, R. J. (2018). From fixed-X to random-X regression: Bias-variance decompositions, covariance penalties, and prediction error estimation. Journal of the American Statistical Association.  https://doi.org/10.1080/01621459.2018.1424632.
  44. Sagarin, B. J., West, S. G., Ratnikov, A., Homan, W. K., Ritchie, T. D., & Hansen, E. J. (2014). Treatment non-compliance in randomized experiments: Statistical approaches and design issues. Psychological Methods, 19(3), 317–333.  https://doi.org/10.1037/met0000013.CrossRefPubMedGoogle Scholar
  45. Sampson, A. R. (1974). A tale of two regressions. Journal of the American Statistical Association, 69, 682–689.  https://doi.org/10.2307/2286002.CrossRefGoogle Scholar
  46. Schaumberg, R. L., & Flynn, F. J. (2017). Clarifying the link between job satisfaction and absenteeism: The role of guilt proneness. Journal of Applied Psychology, 102(6), 982.  https://doi.org/10.1037/apl0000208.CrossRefPubMedGoogle Scholar
  47. Schrimshaw, E. W., Antebi-Gruszka, N., & Downing, J., M J. (2016). Viewing of internet-based sexually explicit media as a risk factor for condomless anal sex among men who have sex with men in four US cities. PLoS ONE, 11(4).  https://doi.org/10.1371/journal.pone.0154439.
  48. Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimental designs for generalized causal inference. Boston, MA: Houghton Mifflin.Google Scholar
  49. Steyer, R., & Nagel, W. (2017). Probability and conditional expectation. Somerset, NJ: Wiley.Google Scholar

Copyright information

© The Psychometric Society 2019

Authors and Affiliations

  1. 1.Institute of PsychologyRWTH Aachen UniversityAachenGermany

Personalised recommendations