Covariance Model Simulation Using Regular Vines

Abstract

We propose a new and flexible simulation method for non-normal data with user-specified marginal distributions, covariance matrix and certain bivariate dependencies. The VITA (VIne To Anything) method is based on regular vines and generalizes the NORTA (NORmal To Anything) method. Fundamental theoretical properties of the VITA method are deduced. Two illustrations demonstrate the flexibility and usefulness of VITA in the context of structural equation models. R code for the implementation is provided.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. 1.

    We use the terms “Gaussian” and “normal” interchangeably.

  2. 2.

    The notation B is a mnemonic for bivariate.

References

  1. Bedford, T., & Cooke, R. M. (2002). Vines: A new graphical model for dependent random variables. Annals of Statistics, 30, 1031–1068.

    Article  Google Scholar 

  2. Bentler, P. (2006). EQS 6 structural equations program manual. Encino: Multivariate Software, Inc.

  3. Bentler, P. M., & Tong, X. (2013). Evaluation of a new mean scaled and moment adjusted test statistic for SEM. Structural Equation Modeling: A Multidisciplinary Journal, 20, 148–156.

    Article  Google Scholar 

  4. Biller, B. (2009). Copula-based multivariate input models for stochastic simulation. Operations Research, 57, 878–892.

    Article  Google Scholar 

  5. Billingsley, P. (1995). Probability and measure. Wiley series in probability and mathematical statistics. New York: Wiley.

    Google Scholar 

  6. Boomsma, A. (1983). On the robustness of LISREL (maximum likelihood estimation) against small sample size and non-normality. Ph.D. thesis, University of Groningen.

  7. Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37, 62–83.

    Article  PubMed  Google Scholar 

  8. Cario, M. C., & Nelson, B. L. (1996). Autoregressive to anything: Time-series input processes for simulation. Operations Research Letters, 19, 51–58.

    Article  Google Scholar 

  9. Cario, M. C., & Nelson, B. L. (1997). Modeling and generating random vectors with arbitrary marginal distributions and correlation matrix. Tech. rep.: Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois.

  10. Curran, P. J., West, S. G., & Finch, J. F. (1996). The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychological Methods, 1, 16–29.

    Article  Google Scholar 

  11. Dissmann, J., Brechmann, E. C., Czado, C., & Kurowicka, D. (2013). Selecting and estimating regular vine copulae and application to financial returns. Computational Statistics and Data Analysis, 59, 52–69.

    Article  Google Scholar 

  12. Erhard, V. & Czado, C. (2009). Sampling count variables with specified pearson correlation: A comparison between a naive and a c-vine sampling approach. In D. Kurowicka & H. Joe (Eds.), Dependence modeling: Vine copula handbook (pp. 73–87). Singapore: World Scientific.

  13. Foldnes, N., & Grønneberg, S. (2015). How general is the Vale–Maurelli simulation approach? Psychometrika, 80, 1066–1083.

    Article  PubMed  Google Scholar 

  14. Foldnes, N., & Olsson, U. H. (2016). A simple simulation technique for nonnormal data with prespecified skewness, kurtosis, and covariance matrix. Multivariate Behavioral Research, 51, 207–219. PMID: 27014851.

    Article  PubMed  Google Scholar 

  15. Fouladi, R. (2000). Performance of modified test statistics in covariance and correlation structure analysis under conditions of multivariate nonnormality. Structural Equation Modeling: A Multidisciplinary Journal, 7, 356–410.

    Article  Google Scholar 

  16. Hobæk Haff, I., Aas, K., & Frigessi, A. (2010). On the simplified pair-copula construction—Simply useful or too simplistic? Journal of Multivariate Analysis, 101, 1296–1310.

    Article  Google Scholar 

  17. Homem-de Mello, T., & Bayraksan, G. (2014). Monte carlo sampling-based methods for stochastic optimization. Surveys in Operations Research and Management Science, 19, 56–85.

    Article  Google Scholar 

  18. Joe, H. (1996). Families of m-variate distributions with given margins and m (m-1)/2 bivariate dependence parameters. In L. Rueschendorf, B. Schweizer, & M. Taylor (Eds.), Distributions with fixed marginals and related topics (pp. 120–141). IMS Lecture Notes-Monograph Series, Hayward.

  19. Joe, H. (2006). Range of correlation matrices for dependent random variables with given marginal distributions. In N. Balakrishnan, E. Castillo, & J. Sarabia (Eds.), Advances in distribution theory, order statistics and inference, in honor of Barry Arnold (pp. 125–142). Boston: Birkhauser.

    Google Scholar 

  20. Joe, H. (2014). Dependence modeling with copulas. London: Chapman & Hall.

    Google Scholar 

  21. Johnson, N. (1949). Systems of frequency curves generated by methods of translation. Biometrika, 36, 149–176.

    Article  PubMed  Google Scholar 

  22. Li, S. T. & Hammond, J. L. (1975). Generation of pseudorandom numbers with specified univariate distributions and correlation coefficients. IEEE transactions on systems, man, and cybernetics (pp. 557–561).

  23. Mair, P., Satorra, A., & Bentler, P. M. (2012). Generating nonnormal multivariate data using copulas: Applications to SEM. Multivariate Behavioral Research, 47, 547–565.

    Article  PubMed  Google Scholar 

  24. Muthén, B., & Muthén, L. (2012). Mplus version 7: User’s guide. Los Angeles, CA: Muthén & Muthén.

    Google Scholar 

  25. O’Brien, G. (1975). The comparison method for stochastic processes. The Annals of Probability, 3, 80–88.

    Article  Google Scholar 

  26. Pearson, K. (1895). Contributions to the mathematical theory of evolution. ii. Skew variation in homogeneous material. Philosophical Transactions of the Royal Society of London A, 59, 343–414.

  27. R Core Team. (2015). R: A Language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

  28. Rosseel, Y. (2012). lavaan: An r package for structural equation modeling. Journal of Statistical Software, 48, 1–36.

    Article  Google Scholar 

  29. Rüschendorf, L. (2009). On the distributional transform, Sklar’s theorem, and the empirical copula process. Journal of Statistical Planning and Inference, 139, 3921–3927.

    Article  Google Scholar 

  30. Satorra, A. (1989). Alternative test criteria in covariance structure analysis: A unified approach. Psychometrika, 54, 131–151.

    Article  Google Scholar 

  31. Schepsmeier, U., Stoeber, J., Brechmann, E. C., & Graeler, B. (2015). VineCopula: Statistical Inference of Vine Copulas. R Package Version, 1, 4.

    Google Scholar 

  32. Sklar, M. (1959). Fonctions de répartition à n dimensions et leurs marges. Université Paris 8.

  33. Vale, C., & Maurelli, V. (1983). Simulating nonnormal distributions. Psychometrika, 48, 465–471.

    Article  Google Scholar 

Download references

Acknowledgements

The simulation work was performed on the Abel Cluster, owned by the University of Oslo and the Norwegian metacenter for High Performance Computing (NOTUR). The idea for how to provide starting values for VITA is partially based on a question from an anonymous referee, who we thank for this contribution. We would also like to thank the associate editor and the referees for comments that improved the presentation of the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Njål Foldnes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (R 26 KB)

Appendix: Technical Results

Appendix: Technical Results

Lemma 1

Let the edge e belong to an R-vine \(\mathcal {V}\). Then \(\mathcal {V}(e)\) is an R-vine.

Proof

The proximity condition is automatically satisfied, since each edge \(e=\{a, b \}\) in \(\mathcal {V}(e)\) also belongs to \(\mathcal {V}\). Also, since the edges in \(\mathcal {V}(e)\) also belongs to \(\mathcal {V}\), there can be no cycles in \(\mathcal {V}(e)\). Finally, let \(e_1=\{a, b \}\) be an edge in \(T_j(e)\). Then, by the proximity condition, \(e_1\) corresponds to a sub-tree \(T_1\), of \(T_{j-1}(e)\) with two edges, a and b. Moreover, due to connectedness, \(e_1\) shares a common node, say b, with some edge \(e_2=\{b, c \}\) in \(T_j(e)\), unless \(T_j(e)\) is exhausted. Corresponding to \(e_2\) is a sub-tree \(T_2\) of \(T_{j-1}(e)\) that shares edge b with \(T_1\). Hence there is a path from a to c in \(T_{j-1}(e)\).\(\square \)

Proof of Theorem 1

Let \(e_k\) be the k’th edge in the order \(\mathcal {O}\), and let \(\mathfrak {c}_{e_k,a} = i, \mathfrak {c}_{e_k,b} = j\). We first show that \(I_{e_k}(\theta _{e_k})\) is increasing. By Theorem 8.65 in Joe (2014), the CDF \(F_{ij}\) of \((X_i,X_j)\) is increasing in \(\theta _{e_k}\) since \(\theta _{e_k} \mapsto B_{e_k, \theta _{e_k}}\) is increasing. Hence \(I_{e_k}(\theta _{e_k})\) is increasing by the Hoeffding identity \( {\text {Cov}} \, (X_i,X_j) = \int _{-\infty }^\infty \int _{-\infty }^\infty [ F_{i,j}(x,y) - F_i(x) F_j(x)] \, \mathrm{d}x \, \mathrm{d}y\). Theorem 8.65 omits the lowest tree \(T_1\) from its statement, but here the result is immediate by the Hoeffding identity since \(C_{i,j} = B_{e}\).

We now show continuity by generalizing Lemma 3 in Cario & Nelson (1997) (see also Lemma A.2 in Cario & Nelson, 1996): they use a stochastic representation specifically for the normal case, while ours is general. Let \(\vartheta _{e_k} = (\theta _{e_1}, \theta _{e_2}, \ldots , \theta _{e_{k-1}})\), so that \((\theta _{e_1}, \theta _{e_2}, \ldots , \theta _{e_k}) = (\vartheta _{e_k}, \theta _{e_k})\). Note that \(\vartheta _{e_k}\) is algebraically independent of \(\theta _{e_k}\). Let \(\delta = |U_{e_k}|\) be the cardinality of \(U_{e_k}\). Suppose without loss of generality that \(U_{e_k} = \{ 1, 2, \ldots , \delta \}\) and that \(i = \delta -1\) and \(j = \delta \). We now show continuity through showing that for any countable sequence \(\{ \theta _{e_k, n} \}_{n \ge 1} \subseteq \Theta _{e_k}\) with \(\lim _{n \rightarrow \infty } \theta _{e_k, n }= \theta _{e_k}\) we have \(\lim _{n \rightarrow \infty } \mathbb {E} _{(\vartheta _{e_k}, \theta _{e_k,n})} X_{i} X_{j} = \mathbb {E} _{(\vartheta _{e_k}, \theta _{e_k})} X_{i} X_{j}\). We use the multivariate quantile transform of O’Brien (1975) (see Section 3 of Rüschendorf (2009) for a helpful discussion of this transformation). Let \(F_{1,\ldots , \delta ; \vartheta _{e_k}, \theta _{e_k,n}}^ {-1} \) be the joint distribution induced by the parametric R-vine specification of \(\mathcal {V}(e_k)\) with parameters \((\vartheta _{e_k}, \theta _{e_k})\), and let \(F_{j| 1, \ldots , j-1 ; \vartheta _{e_k}, \theta _{e_k,n}}^ {-1} \) be the conditional quantile function of \(F_{1,\ldots , \delta ; \vartheta _{e_k}, \theta _{e_k,n}}^ {-1} \) of the j’th variable, conditioned on the 1st through \(j-1\)’th variables.

Let \(X(\vartheta _{e_k}, \theta _{e_k,n}) := (X_1(\vartheta _{e_k}, \theta _{e_k,n}), \ldots , X_\delta (\vartheta _{e_k}, \theta _{e_k,n}))'\) where the coordinates are defined recursively through \(X_1(\vartheta _{e_k}, \theta _{e_k,n}) := F_{1, \vartheta _{e_k}, \theta _{e_k,n}}^ {-1} (U_1)\) and \( X_{j}(\vartheta _{e,n}) := F_{j| 1, \ldots , j-1 ; \vartheta _{e_k}, \theta _{e_k,n}}^ {-1} (U_j | X_{1}(\vartheta _{e_k}, \theta _{e_k,n}), \ldots , X_{j-1}(\vartheta _{e_k}, \theta _{e_k,n})) \) for \(2 \le j \le d\), where \(U_1, U_2, \ldots , U_\delta \sim U[0,1]\) and independent. The multivariate quantile transform then gives \(X(\vartheta _{e_k}, \theta _{e_k,n}) \sim F_{1, 2, \ldots , \delta ; \vartheta _{e_k}, \theta _{e_k,n}}\). Also let \(X = ( X_1, \ldots , X_\delta )' := X (\vartheta _{e_k}, \theta _{e_k})\) so that \(X \sim F_{1, \ldots , \delta ; \vartheta _{e_k}, \theta _{e_k}}\). We now show that for each \(1 \le j \le d\) we have \(\lim _{n \rightarrow \infty } X_j(\vartheta _{e_k}, \theta _{e_k,n}) = X_j(\vartheta _{e_k}, \theta _{e_k}) \) a.s. (almost surely, i.e. with probability one), which implies that \(\lim _{n \rightarrow \infty } X(\vartheta _{e_k}, \theta _{e_k,n}) = X (\vartheta _{e_k}, \theta _{e_k}) = X\) a.s. We proceed by induction. Firstly, \(\theta _e \mapsto F_{1 ; \vartheta _{e_k}, \theta _{e_k,n}}^ {-1} (u_1)\) is assumed to be continuous. Hence, \(\lim _{n \rightarrow \infty } X_1(\vartheta _{e,n}) = \lim _{n \rightarrow \infty } F_{1 ; \vartheta _{e_k}, \theta _{e_k,n}}^ {-1} (U_1) = F_{1 ; \vartheta _{e_k}, \theta _{e_k}}^ {-1} (U_1) = X_1\) a.s. by continuity. Let \(2 \le j \le \delta \) and assume \(\lim _{n \rightarrow \infty } X_i(\vartheta _{e_k}, \theta _{e_k,n}) = X_i\) a.s. for \(1 \le i \le j-1\). By assumption, \((\theta _e, x_1, \ldots , x_{j-1}) \mapsto F_{j | 1, \ldots , j-1 ; \vartheta _{e_k}, \theta _{e_k,n}}^ {-1} (u_j | x_1, \ldots , x_{j-1} )\) is continuous. Hence, we complete the induction argument by concluding that \(\lim _{n \rightarrow \infty } X_{j}(\vartheta _{e_k}, \theta _{e_k,n}) = \lim _{n \rightarrow \infty } F_{j| 1, \ldots , j-1 ; \vartheta _{e_k}, \theta _{e_k,n}}^ {-1} (U_j | X_{1}(\vartheta _{e,n}), \ldots , X_{j-1}(\vartheta _{e,n})) = X_j\) a.s. Let \( \xrightarrow [n \rightarrow \infty ]{\mathscr {W}} \) denote convergence in distribution. The a.s. convergence implies \(X(\vartheta _{e_k}, \theta _{e_k,n}) \xrightarrow [n \rightarrow \infty ]{\mathscr {W}} X(\vartheta _{e_k}, \theta _{e_k})\), implying \((X_{\delta -1}(\vartheta _{e_k}, \theta _{e_k,n}), X_{\delta }(\vartheta _{e_k}, \theta _{e_k,n}))' \xrightarrow [n \rightarrow \infty ]{\mathscr {W}} (X_{\delta -1}, X_\delta )'\).

The continuous mapping theorem (Billingsley, 1995, Theorem 29.2) implies that \(X_{\delta -1}(\vartheta _{e_k}, \theta _{e_k,n}) X_{\delta }(\vartheta _{e_k}, \theta _{e_k,n}) \xrightarrow [n \rightarrow \infty ]{\mathscr {W}} X_{\delta -1} X_\delta \). Theorem 25.12 of Billingsley (1995) (i.e. uniform integrability and weak convergence implies moment convergence) and his eq. (25.13) (a moment condition which implies uniform integrability) shows that if \(\sup _n \mathbb {E} |X_{\delta -1}(\vartheta _{e_k}, \theta _{e_k,n}) X_{\delta }(\vartheta _{e_k}, \theta _{e_k,n})|^{1 + \varepsilon } < \infty \), then we can transfer convergence in distribution to moment convergence, and we get \(\lim _{n \rightarrow \infty } \mathbb {E} _{(\vartheta _{e_k}, \theta _{e_k,n})} X_{i} X_{j} = \mathbb {E} _{(\vartheta _{e_k}, \theta _{e_k})} X_{i} X_{j}\). And by the Cauchy–Schwarz inequality and the moment assumption, we have

$$\begin{aligned}&\sup _n \mathbb {E} |X_{\delta -1}(\vartheta _{e_k}, \theta _{e_k,n}) X_{\delta }(\vartheta _{e_k}, \theta _{e_k,n})|^{1 + \varepsilon /2} \\&\quad \le \sup _{\theta _{e_k} \in \Theta _{e_k}} \int _{[0,1]^d} |F_{i}^ {-1} (u_{i}) F_{j}^ {-1} (u_j)|^{1+\varepsilon /2} \, \mathrm{d}C_{i,j}(u ; \vartheta _{e_k}, \theta _{e_k}) \le \sup _{\theta \in \Theta } \mathbb {E} _\theta |X_{i} X_{j}|^{1+\varepsilon /2} \\&\quad \le \sup _{\theta \in \Theta } \sqrt{ \mathbb {E} _{\theta } |X_{i}|^{2+\varepsilon }} \sqrt{ \mathbb {E} _{\theta } |X_{j}|^{2+\varepsilon }} = \sqrt{\int _\mathbb {R} |x|^{2+\varepsilon } \, \mathrm{d}F_{i}(x) } \sqrt{ \int _\mathbb {R} |x|^{2+\varepsilon } \, \mathrm{d}F_{j}(x) } < \infty , \end{aligned}$$

where the equality follows since the copula parameterization does not change the marginals. This finishes the proof.\(\square \)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grønneberg, S., Foldnes, N. Covariance Model Simulation Using Regular Vines. Psychometrika 82, 1035–1051 (2017). https://doi.org/10.1007/s11336-017-9569-6

Download citation

Keywords

  • multivariate simulation
  • non-normality
  • structural equation modeling
  • regular vines