, Volume 81, Issue 4, pp 969–991 | Cite as

As Good as GOLD: Gram–Schmidt Orthogonalization by Another Name

  • Michael D. Hunter


Generalized orthogonal linear derivative (GOLD) estimates were proposed to correct a problem of correlated estimation errors in generalized local linear approximation (GLLA). This paper shows that GOLD estimates are related to GLLA estimates by the Gram–Schmidt orthogonalization process. Analytical work suggests that GLLA estimates are derivatives of an approximating polynomial and GOLD estimates are linear combinations of these derivatives. A series of simulation studies then further investigates and tests the analytical properties derived. The first study shows that when approximating or smoothing noisy data, GLLA outperforms GOLD, but when interpolating noisy data GOLD outperforms GLLA. The second study shows that when data are not noisy, GLLA always outperforms GOLD in terms of derivative estimation. Thus, when data can be smoothed or are not noisy, GLLA is preferred whereas when they cannot then GOLD is preferred. The last studies show situations where GOLD can produce biased estimates. In spite of these possible shortcomings of GOLD to produce accurate and unbiased estimates, GOLD may still provide adequate or improved model estimation because of its orthogonal error structure. However, GOLD should not be used purely for derivative estimation because the error covariance structure is irrelevant in this case. Future research should attempt to find orthogonal polynomial derivative estimators that produce accurate and unbiased derivatives with an orthogonal error structure.


derivative estimation orthogonalization polynomial approximation latent differential equations dynamical systems 



The author is grateful to Joseph L. Rodgers for helpful comments on earlier drafts of this article, and to the reviewers and associate editor for their invaluable feedback.


  1. Abarbanel, H. D. I. (1996). Analysis of observed chaotic data. New York: Springer.CrossRefGoogle Scholar
  2. Abarbanel, H. D. I., Brown, R., Sidorowich, J. J., & Tsimring, L. S. (1993). The analysis of observed chaotic data in physical systems. Reviews of Modern Physics, 65(4), 1331–1392. doi: 10.1103/RevModPhys.65.1331.CrossRefGoogle Scholar
  3. Bisconti, T. L., Bergeman, C. S., & Boker, S. M. (2004). Emotional well-being in recently bereaved widows: A dynamical systems approach. Journal of Gerontology, 59B, 158–167.CrossRefGoogle Scholar
  4. Bisconti, T. L., Bergeman, C. S., & Boker, S. M. (2006). Social support as a predictor of variability: An examination of the adjustment trajectories of recent widows. Psychology and Aging, 21, 590–599.CrossRefPubMedGoogle Scholar
  5. Björck, Å. (1967). Solving linear least squares problems by Gram–Schmidt othogonalization. BIT, 7, 1–21.CrossRefGoogle Scholar
  6. Boker, S. M., Deboeck, P. R., Edler, C., & Keel, P. K. (2009). Generalized local linear approximation of derivatives from time series. In S.-M. Chow, E. Ferrer, & F. Hsieh (Eds.), Statistical methods for modeling human dynamics: An interdisciplinary dialogue. Boca Raton, FL: Taylor and Francis.Google Scholar
  7. Boker, S. M., & Graham, J. (1998). A dynamical systems analysis of adolescent substance abuse. Multivariate Behavioral Research, 33, 479–507. doi: 10.1207/s15327906mbr3304_3.CrossRefPubMedGoogle Scholar
  8. Boker, S. M., Leibenluft, E., Deboeck, P. R., Virk, G., & Postolache, T. T. (2008). Mood oscillations and coupling between mood and weather in patients with rapid cycling bipolar disorder. International Journal of Child Health and Human Development, 1(2), 181–203.PubMedPubMedCentralGoogle Scholar
  9. Boker, S. M., Montpetit, M. A., Hunter, M. D., & Bergeman, C. S. (2010). Modeling resilience with diffrential equations. In P. C. M. Molenaar & K. Newell (Eds.), Individual pathways of change: Statistical models for analyzing learning and development (pp. 183–206). Washington, DC: American Psychological Association. doi: 10.1037/12140-011.CrossRefGoogle Scholar
  10. Boker, S. M., Neale, M. C., & Rausch, J. (2004). Latent differential equation modeling with multivariate multi-occassion indicators. In K. van Montfort, H. Oud, & A. Satorra (Eds.), Recent developments on structural equation models: Theory and applications (pp. 151–174). Dordrecht: Kluwer Academic Publishers. doi: 10.1007/978-1-4020-1958-6_9.CrossRefGoogle Scholar
  11. Boker, S. M., & Nesselroade, J. R. (2002). A method for modeling the intrinsic dynamics of intraindividual variability: Recovering the parameters of simulated oscillators in multi-wave panel data. Multivariate Behavioral Research, 37, 127–160.CrossRefPubMedGoogle Scholar
  12. Casdagli, M., Eubank, S., Farmer, J. D., & Gibson, J. (1991). State space reconstruction in the presence of noise. Physica D, 51, 52–98. doi: 10.1016/0167-2789(91)90222-U.CrossRefGoogle Scholar
  13. Chow, S., Ram, N., Boker, S. M., Fujita, F., & Clore, G. (2005). Emotion as a thermostat: Representing emotion regulation using a damped oscillator model. Emotion, 5, 208–225.CrossRefPubMedGoogle Scholar
  14. Deboeck, P. R. (2010). Estimating dynamical systems: Derivative estimation hints from Sir Ronald A Fisher. Multivariate Behavioral Research, 45, 725–745. doi: 10.1080/00273171.2010.498294.CrossRefPubMedGoogle Scholar
  15. Estabrook, R. (2015). Evaluating measurement of dynamic constructs: Defining a measurement model of derivatives. Psychological Methods, 20(1), 117–141. doi: 10.1037/a0034523.CrossRefPubMedGoogle Scholar
  16. Fisher, R. A. (1925). The influence of rainfall on the yield of wheat at Rothamsted. Philosophical Transactions of the Royal Society of London, Series B, Containing Papers of a Biological Character, 213, 89–142.CrossRefGoogle Scholar
  17. Giona, M., Lentini, F., & Cimagalli, V. (1991). Functional reconstruction and local prediction of chaotic time series. Physical Review A, 44(6), 3496. doi: 10.1103/PhysRevA.44.3496.CrossRefGoogle Scholar
  18. Hamaker, E. L., Nesselroade, J. R., & Molenaar, P. C. M. (2007). The integrated trait-state model. Journal of Research in Personality, 41, 295–315. doi: 10.1016/j.jrp.2006.04.003.CrossRefGoogle Scholar
  19. Landau, R. H., Páez, M. J., & Bordeianu, C. C. (2007). Computational physics: Problem solving with computers (2nd ed.). Weinheim: Wiley-VCH.CrossRefGoogle Scholar
  20. Lay, D. C. (2003). Linear algebra and its applications (3rd ed.). Boston, MA: Addison Wesley.Google Scholar
  21. Leon, S. J. (2006). Linear algebra with applications (7th ed.). Upper Saddle River, NJ: Prentice Hall.Google Scholar
  22. McArdle, J. J., & Epstein, D. (1987). Latent growth curves within developmental structural equation models. Child Development, 58, 110–133.CrossRefPubMedGoogle Scholar
  23. Molenaar, P. C. M., & Newell, K. M. (2003). Direct fit of theoretical model of phase transition in oscillatory finger motions. British Journal of Mathematical and Statistical Psychology, 56, 199–214. doi: 10.1348/000711003770480002.CrossRefPubMedGoogle Scholar
  24. Narula, S. C. (1979). Orthogonal polynomial regression. International Statistical Review, 47(1), 31–36.CrossRefGoogle Scholar
  25. Oud, J. H. L., & Folmer, H. (2011). Reply to Steele & Ferrer: Modeling oscillation, approximately or exactly? Multivariate Behavioral Research, 46(6), 985–993. doi: 10.1080/00273171.2011.625306.CrossRefPubMedGoogle Scholar
  26. Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36(9), 1627–1639.CrossRefGoogle Scholar
  27. Song, H., & Ferrer, E. (2009). State-space modeling of dynamic psychological processes via the Kalman smoother algorithm: Rationale, finite sample properties, and applications. Structural Equation Modeling, 16, 338–363. doi: 10.1080/10705510902751432.CrossRefGoogle Scholar
  28. Steele, J. S., & Ferrer, E. (2011). Latent differential equation modeling of self-regulatory and coregulatory affective processes. Multivariate Behavioral Research, 46(6), 956–984. doi: 10.1080/00273171.2011.625305.CrossRefPubMedGoogle Scholar
  29. Trail, J. B., Collins, L. M., Rivera, D. E., Li, R., Piper, M. E., & Baker, T. B. (2014). unctional data analysis for dynamical system identification of behavioral processes. Psychological Methods, 19, 175–187. doi: 10.1037/a0034035.CrossRefPubMedGoogle Scholar
  30. Whitney, H. (1936). Differentiable manifolds. The Annals of Mathematics, 37(3), 645–680. Retrieved from
  31. Whittaker, E. T., & Robinson, G. (1924). The calculus of observations: A treatise on numerical mathematics (vol. 36) (No. 9). London.Google Scholar
  32. Yang, M., & Chow, S. (2010). Using state-space model with regime switching to represent the dynamics of facial electromyography (EMG) data. Psychometrika, 75, 744–771. doi: 10.1007/s11336-010-9176-2.CrossRefGoogle Scholar
  33. Zentall, S. R., Boker, S. M., & Braungart-Rieker, J. M. (2006, June). Mother-infant synchrony: A dynamical systems approach. In Proceedings of the Fifth International Conference on Development and Learning.Google Scholar
  34. Zheng, Y., Wiebe, R. P., Cleveland, H. H., Molenaar, P. C., & Harris, K. S. (2013). An idiographic examination of day-to-day patterns of substance use craving, negative affect, and tobacco use among young adults in recovery. Multivariate Behavioral Research, 48(2), 241–266. doi: 10.1080/00273171.2013.763012.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Psychometric Society 2016

Authors and Affiliations

  1. 1.Department of PediatricsUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA

Personalised recommendations