, Volume 82, Issue 2, pp 427–441 | Cite as

A Unified Approach to Functional Principal Component Analysis and Functional Multiple-Set Canonical Correlation

  • Ji Yeh ChoiEmail author
  • Heungsun Hwang
  • Michio Yamamoto
  • Kwanghee Jung
  • Todd S. Woodward


Functional principal component analysis (FPCA) and functional multiple-set canonical correlation analysis (FMCCA) are data reduction techniques for functional data that are collected in the form of smooth curves or functions over a continuum such as time or space. In FPCA, low-dimensional components are extracted from a single functional dataset such that they explain the most variance of the dataset, whereas in FMCCA, low-dimensional components are obtained from each of multiple functional datasets in such a way that the associations among the components are maximized across the different sets. In this paper, we propose a unified approach to FPCA and FMCCA. The proposed approach subsumes both techniques as special cases. Furthermore, it permits a compromise between the techniques, such that components are obtained from each set of functional data to maximize their associations across different datasets, while accounting for the variance of the data well. We propose a single optimization criterion for the proposed approach, and develop an alternating regularized least squares algorithm to minimize the criterion in combination with basis function approximations to functions. We conduct a simulation study to investigate the performance of the proposed approach based on synthetic data. We also apply the approach for the analysis of multiple-subject functional magnetic resonance imaging data to obtain low-dimensional components of blood-oxygen level-dependent signal changes of the brain over time, which are highly correlated across the subjects as well as representative of the data. The extracted components are used to identify networks of neural activity that are commonly activated across the subjects while carrying out a working memory task.


functional data functional principal component analysis functional multiple-set canonical correlation analysis  alternating regularized least squares algorithm 


  1. Bezdek, J. C. (1974). Numerical taxonomy with fuzzy sets. Journal of Mathematical Biology, 1(1), 57–71.CrossRefGoogle Scholar
  2. Cairo, T. A., Woodward, T. S., & Ngan, E. T. C. (2006). Decreased encoding efficiency in schizophrenia. Biological Psychiatry, 59(8), 740–746.CrossRefPubMedGoogle Scholar
  3. Di, C.-Z., Crainiceanu, C. M., Caffo, B. S., & Punjabi, N. M. (2009). Multilevel functional principal component analysis. The Annals of Applied Statistics, 3(1), 458.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Dunn, J. C. (1974). A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics, 3, 32–57.CrossRefGoogle Scholar
  5. Escabias, M., Aguilera, A. M., & Valderrama, M. J. (2004). Principal component estimation of functional logistic regression: Discussion of two different approaches. Journal of Nonparametric Statistics, 16(3–4), 365–384.CrossRefGoogle Scholar
  6. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102, 9673–9678.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Giraldo, R., Delicado, P., & Mateu, J. (2011). Ordinary kriging for function-valued spatial data. Environmental and Ecological Statistics, 18(3), 411–426.CrossRefGoogle Scholar
  8. Goutte, C., Nielsen, F. A., & Hansen, L. K. (2000). Modeling the hemodynamic response in fMRI using smooth FIR filters. IEEE Transactions on Medical Imaging, 19, 1188–1201.CrossRefPubMedGoogle Scholar
  9. Hancock, P. A., & Hutchinson, M. F. (2006). Spatial interpolation of large climate data sets using bivariate thin plate smoothing splines. Environmental Modelling and Software, 21(12), 1684–1694.CrossRefGoogle Scholar
  10. Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm. Applied Statistics, 28(1), 100–108.CrossRefGoogle Scholar
  11. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). New York: Springer.CrossRefGoogle Scholar
  12. He, G., Müller, H. G., & Wang, J. L. (2003). Functional canonical analysis for square integrable stochastic processes. Journal of Multivariate Analysis, 85(1), 54–77.CrossRefGoogle Scholar
  13. Huettel, S. A., Song, A. W., & McCarthy, G. (2009). Functional magnetic resonance imaging. Massachusetts: Sinauer.Google Scholar
  14. Hunter, M. A., & Takane, Y. (2002). Constrained principal component analysis: Various applications. Journal of Educational and Behavioral Statistics, 27(2), 105–145.CrossRefGoogle Scholar
  15. Hwang, H., Jung, K., Takane, Y., & Woodward, T. S. (2012a). Functional multiple-set canonical correlation analysis. Psychometrika, 77(1), 48–64.CrossRefGoogle Scholar
  16. Hwang, H., Jung, K., Takane, Y., & Woodward, T. S. (2013). A unified approach to multiple-set canonical correlation analysis and principal components analysis. British Journal of Mathematical and Statistical Psychology, 66(2), 308–321.CrossRefPubMedGoogle Scholar
  17. Hwang, H., Suk, H. W., Lee, J.-H., Moskowitz, D. S., & Lim, J. (2012b). Functional extended redundancy analysis. Psychometrika, 77(3), 524–542.CrossRefPubMedGoogle Scholar
  18. Jackson, I., & Sirois, S. (2009). Infant cognition: going full factorial with pupil dilation. Developmental Science, 12(4), 670–679.CrossRefPubMedGoogle Scholar
  19. Kneip, A., & Utikal, K. J. (2001). Inference for density families using functional principal component analysis. Journal of the American Statistical Association, 96(454), 519–542.CrossRefGoogle Scholar
  20. Leurgans, S. E., Moyeed, R. A., & Silverman, B. W. (1993). Canonical correlation analysis when the data are curves. Journal of the Royal Statistical Society Series B (Methodological), 55, 725–740.Google Scholar
  21. MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (pp. 281–297).Google Scholar
  22. Marra, G., Miller, D. L., & Zanin, L. (2012). Modelling the spatiotemporal distribution of the incidence of resident foreign population. Statistica Neerlandica, 66(2), 133–160.CrossRefGoogle Scholar
  23. Metzak, P. D., Feredoes, E., Takane, Y., Wang, L., Weinstein, S., Cairo, T. A., et al. (2011a). Constrained principal component analysis reveals functionally connected load-dependent networks involved in multiple stages of working memory. Human Brain Mapping, 32(6), 856–871.CrossRefPubMedGoogle Scholar
  24. Metzak, P. D., Riley, J. D., Wang, L., Whitman, J. C., Ngan, E. T. C., & Woodward, T. S. (2011b). Decreased efficiency of task-positive and task-negative networks during working memory in schizophrenia. Schizophrenia Bulletin, 38(4), 803–813.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Mishra, S. K. (2009). Representation-constrained canonical corrleation analysis: A hybridization of canonical correlation and principal component analyses. Journal of Applied Economic Sciences (JAES), 7, 115–124.Google Scholar
  26. Ramsay, J. O., & Dalzell, C. J. (1991). Some tools for functional data analysis. Journal of the Royal Statistical Society. Series B (Methodological), 53, 539–572.Google Scholar
  27. Ramsay, J. O., & Silverman, B. W. (2005). Functional data analysis (2nd ed.). New York: Springer.Google Scholar
  28. Ramsay, T. (2002). Spline smoothing over difficult regions. Journal of the Royal Statistical Society, 64(2), 307–319.CrossRefGoogle Scholar
  29. Rice, J. A., & Silverman, B. W. (1991). Estimating the mean and covariance structure nonparametrically when the data are curves. Journal of the Royal Statistical Society, 53, 233–243.Google Scholar
  30. Ruiz-Medina, M. D. (2012). New challenges in spatial and spatiotemporal functional statistics for high-dimensional data. Spatial Statistics, 1, 82–91.CrossRefGoogle Scholar
  31. Sibson, R., & Stone, G. (1991). Computation of thin-plate splines. SIAM Journal on Scientific and Statistical Computing, 12(6), 1304–1313.CrossRefGoogle Scholar
  32. Tan, T., Choi, J. Y., & Hwang, H. (2015). Fuzzy clusterwise functional extended redundancy analysis. Behaviormetrika, 42(1), 37–62.CrossRefGoogle Scholar
  33. Tian, T. S. (2010). Functional data analysis in brain imaging studies. Frontiers in Psychology, 1, 1–11.Google Scholar
  34. Vines, B. W., Nuzzo, R. L., & Levitin, D. J. (2005). Analyzing temporal dynamics in music: Differential calculus, physics, and functional data analysis techniques. Music Perception, 23, 137–152.Google Scholar
  35. Vines, B. W., Wanderley, M. M., Krumhansl, C. L., Nuzzo, R. L., & Levitin, D. J. (2004). Performance gestures of musicians: What structural and emotional information do they convey? In Gesture-based communication in human-computer interaction (pp. 468–478). Berlin: Springer.Google Scholar
  36. Viviani, R., Grön, G., & Spitzer, M. (2005). Functional principal component analysis of fMRI data. Human Brain Mapping, 24(2), 109–129.CrossRefPubMedGoogle Scholar
  37. Yao, F., Müller, H.-G., & Wang, J.-L. (2005). Functional data analysis for sparse longitudinal data. Journal of the American Statistical Association, 100(470), 577–590.CrossRefGoogle Scholar

Copyright information

© The Psychometric Society 2016

Authors and Affiliations

  • Ji Yeh Choi
    • 1
    Email author
  • Heungsun Hwang
    • 1
  • Michio Yamamoto
    • 2
  • Kwanghee Jung
    • 3
  • Todd S. Woodward
    • 4
  1. 1.Department of PsychologyMcGill UniversityMontrealCanada
  2. 2.Kyoto UniversityKyotoJapan
  3. 3.University of Texas Health Science CenterSan AntonioUSA
  4. 4.University of British Columbia and British Columbia Mental Health and Addiction Research InstituteVancouverCanada

Personalised recommendations