Advertisement

Psychometrika

, Volume 81, Issue 2, pp 565–581 | Cite as

Multilevel Dynamic Generalized Structured Component Analysis for Brain Connectivity Analysis in Functional Neuroimaging Data

  • Kwanghee JungEmail author
  • Yoshio Takane
  • Heungsun Hwang
  • Todd S. Woodward
Article

Abstract

We extend dynamic generalized structured component analysis (GSCA) to enhance its data-analytic capability in structural equation modeling of multi-subject time series data. Time series data of multiple subjects are typically hierarchically structured, where time points are nested within subjects who are in turn nested within a group. The proposed approach, named multilevel dynamic GSCA, accommodates the nested structure in time series data. Explicitly taking the nested structure into account, the proposed method allows investigating subject-wise variability of the loadings and path coefficients by looking at the variance estimates of the corresponding random effects, as well as fixed loadings between observed and latent variables and fixed path coefficients between latent variables. We demonstrate the effectiveness of the proposed approach by applying the method to the multi-subject functional neuroimaging data for brain connectivity analysis, where time series data-level measurements are nested within subjects.

Keywords

generalized structured component analysis multilevel analysis structural equation modeling alternating least squares (ALS) algorithm brain connectivity analysis time series data functional neuroimaging multi-subject data 

References

  1. Cairo, T. A., Woodward, T. S., & Ngan, E. T. (2006). Decreased encoding efficiency in schizophrenia. Biological Psychiatry, 59, 740–746.CrossRefPubMedGoogle Scholar
  2. Chen, G., Glen, D. R., Saad, Z. S., Hamilton, J. P., Thomason, M. E., Gotlib, I. H., et al. (2011). Vector autoregression, structural equation modeling, and their synthesis in neuroimaging data analysis. Computers in Biology and Medicine, 41, 1142–1155.CrossRefPubMedPubMedCentralGoogle Scholar
  3. deLeeuw, J., Young, F. W., & Takane, Y. (1976). Additive structure in qualitative data: An alternating least squares method with optimal scaling features. Psychometrika, 41, 471–503.CrossRefGoogle Scholar
  4. Efron, B. (1982). The jackknife, the bootstrap and other resampling plans. Philadelphia: SIAM.CrossRefGoogle Scholar
  5. Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping, 2, 56–78.CrossRefGoogle Scholar
  6. Gates, K. M., Molenaar, P. C., Hillary, F. G., & Slobounov, S. (2011). Extended unified SEM approach for modeling event-related fMRI data. NeuroImage, 54, 1151–1158.CrossRefPubMedGoogle Scholar
  7. Greve, D. N., Brown, G. G., Mueller, B. A., Glover, G., & Liu, T. T. (2013). A survey of the sources of noise in fMRI. Psychometrika, 78, 396–416.CrossRefPubMedGoogle Scholar
  8. Hwang, H., & Takane, Y. (2004). Generalized structured component analysis. Psychometrika, 69, 81–99.CrossRefGoogle Scholar
  9. Hwang, H., & Takane, Y. (2014). Generalized structured component analysis: A component-based approach to structural equation modeling. Boca Raton, FL: Chapman & Hall/CRC Press. (forthcoming).Google Scholar
  10. Hwang, H., Ho, R. M., & Lee, J. (2010). Generalized structured component analysis with latent interactions. Psychometrika, 75, 228–242.CrossRefGoogle Scholar
  11. Jung, K., Takane, Y., Hwang, H., & Woodward, T. S. (2012). Dynamic GSCA (Generalized Structured Component Analysis) with applications to the analysis of effective connectivity in functional neuroimaging data. Psychometrika, 77, 827–848.CrossRefGoogle Scholar
  12. Kim, J., Zhu, W., Chang, L., Bentler, P. M., & Ernst, T. (2007). Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data. Human Brain Mapping, 28, 85–93.CrossRefPubMedGoogle Scholar
  13. Snijders, T., & Bosker, R. (1999). Multilevel analysis: An introduction to basic and advanced multilevel modeling. London: Sage Publication.Google Scholar
  14. Takane, Y. (2013). Constrained principal component analysis and related techniques. Boca Raton, FL: Chapman and Hall/CRC Press.Google Scholar
  15. Takane, Y., & Hunter, M. A. (2001). Constrained principal component analysis: A comprehensive theory. Applicable Algebra in Engineering, Communication and Computing, 12, 391–419.CrossRefGoogle Scholar
  16. Takane, Y., & Shibayama, T. (1991). Principal component analysis with external information on both subjects and variables. Psychometrika, 56, 97–120.CrossRefGoogle Scholar
  17. Van Den Heuvel, M. P., & Hulshoff Pol, H. E. (2010). Exploring the brain network: A review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20, 519–534.CrossRefPubMedGoogle Scholar
  18. Woodward, T. S., Cairo, T. A., Ruff, C. C., Takane, Y., Hunter, M. A., & Ngan, E. T. C. (2006). Functional connectivity reveals load dependent neural systems underlying encoding and maintenance in verbal working memory. Neuroscience, 139, 317–325.CrossRefPubMedGoogle Scholar

Copyright information

© The Psychometric Society 2015

Authors and Affiliations

  • Kwanghee Jung
    • 1
    Email author
  • Yoshio Takane
    • 2
  • Heungsun Hwang
    • 3
  • Todd S. Woodward
    • 4
  1. 1.Department of Pediatrics, Children’s Learning InstituteThe University of Texas Health Science Center at HoustonHoustonUSA
  2. 2.University of VictoriaVictoriaCanada
  3. 3.McGill UniversityMontrealCanada
  4. 4.University of British ColumbiaVancouverCanada

Personalised recommendations