Advertisement

Psychometrika

, Volume 80, Issue 2, pp 491–513 | Cite as

The Lognormal Race: A Cognitive-Process Model of Choice and Latency with Desirable Psychometric Properties

  • Jeffrey N. Rouder
  • Jordan M. Province
  • Richard D. Morey
  • Pablo Gomez
  • Andrew Heathcote
Article

Abstract

We present a cognitive process model of response choice and response time performance data that has excellent psychometric properties and may be used in a wide variety of contexts. In the model there is an accumulator associated with each response option. These accumulators have bounds, and the first accumulator to reach its bound determines the response time and response choice. The times at which accumulator reaches its bound is assumed to be lognormally distributed, hence the model is race or minima process among lognormal variables. A key property of the model is that it is relatively straightforward to place a wide variety of models on the logarithm of these finishing times including linear models, structural equation models, autoregressive models, growth-curve models, etc. Consequently, the model has excellent statistical and psychometric properties and can be used in a wide range of contexts, from laboratory experiments to high-stakes testing, to assess performance. We provide a Bayesian hierarchical analysis of the model, and illustrate its flexibility with an application in testing and one in lexical decision making, a reading skill.

Key words

cognitive psychometrics response-times models race models 

Notes

Acknowledgements

This research is supported by National Science Foundation Grants SES-1024080 and BCS-1240359 (JNR) and Australian Research Council Professorial Fellowship (AH).

References

  1. Anderson, J.R., & Lebiere, C. (1998). The atomic component of thought. Mahwah: Lawrence Erlbaum Associates. Google Scholar
  2. Audley, R.J., & Pike, A.R. (1965). Some alternative stochastic models of choice. British Journal of Mathematical and Statistical Psychology, 18, 207–225. CrossRefGoogle Scholar
  3. Bertelson, P. (1961). Sequential redundancy and speed in a serial two choice responding task. Quarterly Journal of Experimental Psychology, 13, 290–292. CrossRefGoogle Scholar
  4. Brown, S.D., & Heathcote, A. (2008). The simplest complete model of choice reaction time: linear ballistic accumulation. Cognitive Psychology, 57, 153–178. PubMedCrossRefGoogle Scholar
  5. Craigmile, P.F., Peruggia, M., & Van Zandt, T. (2010). Hierarchical Bayes models for response time. Psychometrika, 75, 613–632. CrossRefGoogle Scholar
  6. Davis, C. (2010). The spatial coding model of visual word identification. Psychological Review, 117(3), 713. PubMedCrossRefGoogle Scholar
  7. Diederich, A., & Busemeyer, J.R. (2003). Simple matrix methods for analyzing diffusion models of choice probability, choice response time and simple response time. Journal of Mathematical Psychology, 47, 304–322. CrossRefGoogle Scholar
  8. Dufau, S., Grainger, J., & Ziegler, J.C. (2012). How to say “no” to a nonword: a leaky competing accumulator model of lexical decision. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 1117–1128. PubMedGoogle Scholar
  9. Dzhafarov, E.N. (1992). The structure of simple reaction time to step-function signals. Journal of Mathematical Psychology, 36, 235–268. CrossRefGoogle Scholar
  10. Embretson, S.E. (1991). A multidimensional latent trait model for measuring learning and change. Psychometrika, 56, 495–516. CrossRefGoogle Scholar
  11. Falmagne, J.C., Cohen, S.P., & Dwivedi, A. (1975). Two choice reactions as an ordered memory scanning process. In P.M.A. Rabbit & S. Dornic (Eds.), Attention and performance V (pp. 296–344). New York: Academic Press. Google Scholar
  12. Gelfand, A., & Smith, A.F.M. (1990). Sampling based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 398–409. CrossRefGoogle Scholar
  13. Gelman, A., Carlin, J.B., Stern, H.S., & Rubin, D.B. (2004). Bayesian data analysis (2nd ed.). London: Chapman and Hall Google Scholar
  14. Gold, J.I., & Shadlen, M.N. (2007). The neural basis of decision making. Annual Review of Neuroscience, 30, 535–574. PubMedCrossRefGoogle Scholar
  15. Gomez, P., Ratcliff, R., & Perea, M. (2008). The overlap model: a model of letter position coding. Psychological Review, 115(3), 577. PubMedCentralPubMedCrossRefGoogle Scholar
  16. Greenwald, A.G., Draine, S.C., & Abrams, R.L. (1996). Three cognitive markers of unconscious semantic activation. Science, 273(5282), 1699–1702. PubMedCrossRefGoogle Scholar
  17. Grice, G.R. (1968). Stimulus intensity and response evocation. Psychological Review, 75, 359–373. PubMedCrossRefGoogle Scholar
  18. Hanes, D.P., & Schall, J.D. (1996). Neural control of voluntary movement initiation. Science, 274(5286), 427–430. PubMedCrossRefGoogle Scholar
  19. Heathcote, A., & Love, J. (2012). Linear deterministic accumulator models of simple choice. Frontiers in Cognitive Science, 3, 292. http://www.frontiersin.org/Cognitive_Science/10.3389/fpsyg.2012.0029. Google Scholar
  20. Huk, A., & Shadlen, M.N. (2005). Neural activity in macaque parietal cortex reflects temporal integration of visual motion signals during perceptual decision making. Journal of Neuroscience, 25, 10420–10436. PubMedCrossRefGoogle Scholar
  21. Jackman, S. (2009). Bayesian analysis for the social sciences. Chichester: Wiley. CrossRefGoogle Scholar
  22. Kass, R.E. (1993). Bayes factors in practice. The Statistician, 42, 551–560. CrossRefGoogle Scholar
  23. Kass, R.E., & Raftery, A.E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773–795. CrossRefGoogle Scholar
  24. Kucera, H., & Francis, W.N. (1967). Computational analysis of present-day American English. Providence: Brown University Press. Google Scholar
  25. Lee, S.-Y. (2007). Structural equation modelling: a Bayesian approach. New York: Wiley. CrossRefGoogle Scholar
  26. Link, S.W. (1992). Wave theory of difference and similarity. Hillsdale: Erlbaum. Google Scholar
  27. Luce, R.D. (1986). Response times. New York: Oxford University Press. Google Scholar
  28. McClelland, J.L. (1993). Toward a theory of information processing in graded, random, and interactive networks. In D.E. Meyer & S. Kornblum (Eds.), Attention & performance XIV: synergies in experimental psychology, artificial intelligence and cognitive neuroscience. Cambridge: MIT Press. Google Scholar
  29. McClelland, J.L., & Rumelhart, D.E. (1981). An interactive activation model of context effects in letter perception: I. An account of basic findings. Psychological Review, 88, 375–407. CrossRefGoogle Scholar
  30. McGill, W. (1963). Stochastic latency mechanism. In R.D. Luce & E. Galanter (Eds.), Handbook of mathematical psychology (Vol. 1, pp. 309–360). New York: Wiley. Google Scholar
  31. Morey, R.D., Rouder, J.N., Pratte, M.S., & Speckman, P.L. (2011). Using MCMC chain outputs to efficiently estimate Bayes factors. Journal of Mathematical Psychology, 55, 368–378. http://dx.doi.org/10.1016/j.jmp.2011.06.004. CrossRefGoogle Scholar
  32. Peruggia, M., Van Zandt, T., & Chen, M. (2002). Was it a car or a cat I saw? An analysis of response times for word recognition. Case Studies in Bayesian Statistics, 6, 319–334. Google Scholar
  33. Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: Danish Institute for Educational Research. Google Scholar
  34. Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59–108. CrossRefGoogle Scholar
  35. Ratcliff, R., & McKoon, G.M. (2008). The diffusion decision model: theory and data for two-choice decision tasks. Neural Computation, 20, 873–922. PubMedCentralPubMedCrossRefGoogle Scholar
  36. Ratcliff, R., & Rouder, J.N. (1998). Modeling response times for decisions between two choices. Psychological Science, 9, 347–356. CrossRefGoogle Scholar
  37. Ratcliff, R., Thapar, A., & McKoon, G. (2003). A diffusion model analysis of the effects of aging on brightness discrimination. Perception and Psychophysics, 65, 523–535. PubMedCentralPubMedCrossRefGoogle Scholar
  38. Ratcliff, R., Gomez, P., & McKoon, G.M. (2004). A diffusion model account of the lexical decision task. Psychological Review, 111, 159–182. PubMedCentralPubMedCrossRefGoogle Scholar
  39. Reddi, B., & Carpenter, R. (2003). Accuracy, information and response time in a saccadic decision task. Journal of Neurophysiology, 90, 3538–3546. PubMedCrossRefGoogle Scholar
  40. Riefer, D.M., Knapp, B.R., Batchelder, W.H., Bamber, D., & Manifold, V. (2002). Cognitive psychometrics: assessing storage and retrieval deficits in special populations with multinomial processing tree models. Psychological Assessment, 14, 184–201. PubMedCrossRefGoogle Scholar
  41. Roberts, G.O., & Sahu, S.K. (1997). Updating schemes, correlation structure, blocking and parameterization for the Gibbs sampler. Journal of the Royal Statistical Society, Series B, Methodological, 59, 291–317. CrossRefGoogle Scholar
  42. Roberts, S., & Pashler, H. (2000). How persuasive is a good fit? A comment on theory testing. Psychological Review, 107, 358–367. PubMedCrossRefGoogle Scholar
  43. Roitman, J.D., & Shadlen, M.N. (2002). Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. Journal of Neuroscience, 22, 9475–9489. PubMedGoogle Scholar
  44. Rouder, J.N. (2005). Are unshifted distributional models appropriate for response time? Psychometrika, 70, 377–381. CrossRefGoogle Scholar
  45. Rouder, J.N., Sun, D., Speckman, P.L., Lu, J., & Zhou, D. (2003). A hierarchical Bayesian statistical framework for response time distributions. Psychometrika, 68, 587–604. CrossRefGoogle Scholar
  46. Rumelhart, D.E., & McClelland, J.L. (1982). An interactive activation model of context effects in letter perception: II. The contextual enhancement effect and some tests and extensions of the model. Psychological Review, 89, 60–94. PubMedCrossRefGoogle Scholar
  47. Schall, J.D. (2003). Neural correlates of decision processes: neural and mental chronometry. Current Opinion in Neurobiology, 13, 182–186. PubMedCrossRefGoogle Scholar
  48. Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized latent variable modeling: multilevel, longitudinal, and structural equation models. Boca Raton: CRC Press. CrossRefGoogle Scholar
  49. Smith, P.L. (2000). Stochastic dynamic models of response time and accuracy: a foundational primer. Journal of Mathematical Psychology, 44, 408–463. PubMedCrossRefGoogle Scholar
  50. Spiegelhalter, D.J., Best, N.G., Carlin, B.P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B, Statistical Methodology, 64, 583–639. CrossRefGoogle Scholar
  51. Thissen, D. (1983). Timed testing: an approach using item response theory. In D.J. Weiss (Ed.), New horizons in testing: latent trait test theory and computerized adaptive testing (pp. 179–203). New York: Academic Press. CrossRefGoogle Scholar
  52. Tuerlickx, F., & De Boek, P. (2005). Two interpretations of the discrimination parameter. Psychometrika, 70, 629–650. CrossRefGoogle Scholar
  53. Ulrich, R., & Miller, J.O. (1993). Information processing models generating lognormally distributed reaction times. Journal of Mathematical Psychology, 37, 513–525. CrossRefGoogle Scholar
  54. Usher, M., & McClelland, J.L. (2001). On the time course of perceptual choice: the leaky competing accumulator model. Psychological Review, 108, 550–592. PubMedCrossRefGoogle Scholar
  55. van Breukelen, G.J.P. (2005). Psychometric modeling of response time and accuracy with mixed and conditional regression. Psychometrika. Google Scholar
  56. Vandekerckhove, J., Tuerlinckx, F., & Lee, M.D. (2011). Hierarchical diffusion models for two-choice response time. Psychological Methods, 16, 44–62. PubMedCrossRefGoogle Scholar
  57. Vandekerckhove, J., Verheyen, S., & Tuerlinckx, F. (2010). A cross random effects diffusion model for speeded semantic categorization decisions. Acta Psychologica, 133, 269–282. PubMedCrossRefGoogle Scholar
  58. van der Linden, W.J. (2007). A hierarchical framework for modeling speed and accuracy on test items. Psychometrika, 72, 287–308. CrossRefGoogle Scholar
  59. van der Linden, W.J. (2009). Conceptual issues in response-time modeling. Journal of Educational Measurement, 14, 247–272. CrossRefGoogle Scholar
  60. van der Linden, W.J., Scrams, D.J., & Schnipke, D.L. (1999). Using response-time constraints to control for differential speededness in computerized adaptive testing. Applied Psychological Measurement, 23, 195–210. CrossRefGoogle Scholar
  61. van der Maas, H.L.J., Molenaar, D., Maris, G., Kievit, R.A., & Borsboom, D. (2001). Cognitive psychology meets psychometric theory: on the relation between process models for decision making and latent variable models for individual differences. Psychological Review, 118, 339–356. CrossRefGoogle Scholar
  62. Wagenmakers, E.-J., van der Maas, H.L.J., & Grasman, R.P.P.P. (2007). An EZ-diffusion model for response time and accuracy. Psychonomic Bulletin & Review, 14, 3–22. CrossRefGoogle Scholar
  63. Whitney, C., Bertrand, D., & Grainger, J. (2011). On coding the position of letters in words . Experimental Psychology (formerly Zeitschrift für Experimentelle Psychologie), 1–6. Google Scholar
  64. Wild, P., & Gilks, W.R. (1993). Adaptive rejection sampling from log-concave density functions. Applied Statistics, 42, 701–708. CrossRefGoogle Scholar

Copyright information

© The Psychometric Society 2014

Authors and Affiliations

  • Jeffrey N. Rouder
    • 1
  • Jordan M. Province
    • 1
  • Richard D. Morey
    • 2
  • Pablo Gomez
    • 3
  • Andrew Heathcote
    • 4
  1. 1.University of MissouriColumbiaUSA
  2. 2.University of GroningenGroningenThe Netherlansa
  3. 3.Depaul UniversityChicagoUSA
  4. 4.University of NewcastleNewcastleAustralia

Personalised recommendations