A Penalty Approach to Differential Item Functioning in Rasch Models

Abstract

A new diagnostic tool for the identification of differential item functioning (DIF) is proposed. Classical approaches to DIF allow to consider only few subpopulations like ethnic groups when investigating if the solution of items depends on the membership to a subpopulation. We propose an explicit model for differential item functioning that includes a set of variables, containing metric as well as categorical components, as potential candidates for inducing DIF. The ability to include a set of covariates entails that the model contains a large number of parameters. Regularized estimators, in particular penalized maximum likelihood estimators, are used to solve the estimation problem and to identify the items that induce DIF. It is shown that the method is able to detect items with DIF. Simulations and two applications demonstrate the applicability of the method.

This is a preview of subscription content, log in to check access.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

References

  1. Agresti, A. (2002). Categorical data analysis. New York: Wiley.

    Google Scholar 

  2. Andersen, E. (1973). A goodness of fit test for the Rasch model. Psychometrika, 38, 123–140. doi:10.1007/BF02291180.

    Article  Google Scholar 

  3. Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1), 183–202.

    Article  Google Scholar 

  4. Bondell, H., Krishna, A., & Ghosh, S. (2010). Joint variable selection for fixed and random effects in linear mixed-effects models. Biometrics, 1069–1077.

  5. Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

    Article  Google Scholar 

  6. Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, J.C. (1984). Classification and regression trees. Monterey: Wadsworth.

    Google Scholar 

  7. Bühlmann, P., & Hothorn, T. (2007). Boosting algorithms: regularization, prediction and model fitting (with discussion). Statistical Science, 22, 477–505.

    Article  Google Scholar 

  8. Eilers, P.H.C., & Marx, B.D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science, 11, 89–121.

    Article  Google Scholar 

  9. Fan, J., & Li, R. (2001). Variable selection via nonconcave penalize likelihood and its oracle properties. Journal of the American Statistical Association, 96, 1348–1360.

    Article  Google Scholar 

  10. Friedman, J.H., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1–22.

    PubMed Central  PubMed  Google Scholar 

  11. Fu, W.J. (1998). Penalized regression: the bridge versus the lasso. Journal of Computational and Graphical Statistics, 7, 397–416.

    Google Scholar 

  12. Hastie, T., Tibshirani, R., & Friedman, J.H. (2009). The elements of statistical learning (2nd ed.). New York: Springer.

    Google Scholar 

  13. Hoerl, A.E., & Kennard, R.W. (1970). Ridge regression: bias estimation for nonorthogonal problems. Technometrics, 12, 55–67.

    Article  Google Scholar 

  14. Holland, P.W., & Thayer, D.T. (1988). Differential item performance and the Mantel-Haenszel procedure. In Test validity (pp. 129–145).

    Google Scholar 

  15. Holland, W., & Wainer, H. (1993). Differential item functioning. Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  16. Kim, S.-H., Cohen, A.S., & Park, T.-H. (1995). Detection of differential item functioning in multiple groups. Journal of Educational Measurement, 32(3), 261–276.

    Article  Google Scholar 

  17. Knight, K., & Fu, W. (2000). Asymptotics for lasso-type estimators. Annals of Statistics, 1356–1378.

  18. LeCessie (1992). Ridge estimators in logistic regression. Applied Statistics, 41(1), 191–201.

    Article  Google Scholar 

  19. Lord, F.M. (1980). Applications of item response theory to practical testing problems. London: Routledge.

    Google Scholar 

  20. Magis, D., Beland, S., & Raiche, G. (2013). difR: collection of methods to detect dichotomous differential item functioning (DIF) in psychometrics. R package version 4.4.

  21. Magis, D., Bèland, S., Tuerlinckx, F., & Boeck, P. (2010). A general framework and an R package for the detection of dichotomous differential item functioning. Behavior Research Methods, 42(3), 847–862.

    Article  PubMed  Google Scholar 

  22. Magis, D., Raîche, G., Béland, S., & Gérard, P. (2011). A generalized logistic regression procedure to detect differential item functioning among multiple groups. International Journal of Testing, 11(4), 365–386.

    Article  Google Scholar 

  23. Mair, P., & Hatzinger, R. (2007). Extended Rasch modeling: the erm package for the application of IRT models in R. Journal of Statistical Software, 20(9), 1–20.

    Google Scholar 

  24. Mair, P., Hatzinger, R., & Maier, M.J. (2012). eRm: extended Rasch modeling. R package version 0.15-0.

  25. Mantel, N., & Haenszel, W. (1959). Statistical aspects of the analysis of data from retrospective studies of disease. Journal of the National Cancer Institute, 22(4), 719–748.

    PubMed  Google Scholar 

  26. Masters, G. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149–174.

    Article  Google Scholar 

  27. McCullagh, P., & Nelder, J.A. (1989). Generalized linear models (2nd ed.). New York: Chapman & Hall.

    Google Scholar 

  28. Meier, L. (2009). grplasso: fitting user specified models with Group Lasso penalty. R package version 0.4-2.

  29. Meier, L., van de Geer, S., & Bühlmann, P. (2008). The group lasso for logistic regression. Journal of the Royal Statistical Society. Series B, 70, 53–71.

    Article  Google Scholar 

  30. Merkle, E.C., & Zeileis, A. (2013). Tests of measurement invariance without subgroups: a generalization of classical methods. Psychometrika, 78, 59–82.

    Article  PubMed  Google Scholar 

  31. Millsap, R., & Everson, H. (1993). Methodology review: statistical approaches for assessing measurement bias. Applied Psychological Measurement, 17(4), 297–334.

    Article  Google Scholar 

  32. Ni, X., Zhang, D., & Zhang, H.H. (2010). Variable selection for semiparametric mixed models in longitudinal studies. Biometrics, 66, 79–88.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Nyquist, H. (1991). Restricted estimation of generalized linear models. Applied Statistics, 40, 133–141.

    Article  Google Scholar 

  34. Osborne, M., Presnell, B., & Turlach, B. (2000). On the lasso and its dual. Journal of Computational and Graphical Statistics, 9(2), 319–337.

    Google Scholar 

  35. Osterlind, S., & Everson, H. (2009). Differential item functioning (Vol. 161). Thousand Oaks: Sage Publications, Inc.

    Google Scholar 

  36. Park, M.Y., & Hastie, T. (2007). An l1 regularization-path algorithm for generalized linear models. Journal of the Royal Statistical Society. Series B, 69, 659–677.

    Article  Google Scholar 

  37. Penfield, R.D. (2001). Assessing differential item functioning among multiple groups: a comparison of three Mantel-Haenszel procedures. Applied Measurement in Education, 14(3), 235–259.

    Article  Google Scholar 

  38. R Core Team (2012). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. ISBN 3-900051-07-0.

    Google Scholar 

  39. Raju, N.S. (1988). The area between two item characteristic curves. Psychometrika, 53(4), 495–502.

    Article  Google Scholar 

  40. Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: Danish Institute for Educational Research.

    Google Scholar 

  41. Rogers, H. (2005). Differential item functioning. In Encyclopedia of statistics in behavioral science.

    Google Scholar 

  42. Samejima, F. (1997). Graded response model. In Handbook of modern item response theory (pp. 85–100).

    Google Scholar 

  43. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.

    Article  Google Scholar 

  44. Segerstedt, B. (1992). On ordinary ridge regression in generalized linear models. Communications in Statistics. Theory and Methods, 21, 2227–2246.

    Article  Google Scholar 

  45. Soares, T., Gonçalves, F., & Gamerman, D. (2009). An integrated Bayesian model for dif analysis. Journal of Educational and Behavioral Statistics, 34(3), 348–377.

    Article  Google Scholar 

  46. Somes, G.W. (1986). The generalized Mantel–Haenszel statistic. American Statistician, 40(2), 106–108.

    Google Scholar 

  47. Strobl, C., Kopf, J., & Zeileis, A. (2013). Rasch trees: a new method for detecting differential item functioning in the Rasch model. Psychometrika. doi:10.1007/s11336-013-9388-3.

    PubMed  Google Scholar 

  48. Strobl, C., Malley, J., & Tutz, G. (2009). An introduction to recursive partitioning: rationale, application and characteristics of classification and regression trees, bagging and random forests. Psychological Methods, 14, 323–348.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Swaminathan, H., & Rogers, H.J. (1990). Detecting differential item functioning using logistic regression procedures. Journal of Educational Measurement, 27(4), 361–370.

    Article  Google Scholar 

  50. Thissen, D., Steinberg, L., & Wainer, H. (1993). Detection of differential item functioning using the parameters of item response models. In P. Holland & H. Wainer (Eds.), Differential item functioning (pp. 67–113). Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  51. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B, 58, 267–288.

    Google Scholar 

  52. Tutz, G. (2012). Regression for categorical data. Cambridge: Cambridge University Press.

    Google Scholar 

  53. Tutz, G., & Binder, H. (2006). Generalized additive modeling with implicit variable selection by likelihood-based boosting. Biometrics, 62, 961–971.

    Article  PubMed  Google Scholar 

  54. Van den Noortgate, W., & De Boeck, P. (2005). Assessing and explaining differential item functioning using logistic mixed models. Journal of Educational and Behavioral Statistics, 30(4), 443–464.

    Article  Google Scholar 

  55. Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society. Series B, 68, 49–67.

    Article  Google Scholar 

  56. Zeileis, A., Hothorn, T., & Hornik, K. (2008). Model-based recursive partitioning. Journal of Computational and Graphical Statistics, 17(2), 492–514.

    Article  Google Scholar 

  57. Zou, H., Hastie, T., & Tibshirani, R. (2007). On the “degrees of freedom” of the lasso. The Annals of Statistics, 35(5), 2173–2192.

    Article  Google Scholar 

  58. Zumbo, B. (1999). A handbook on the theory and methods of differential item functioning (dif). Ottawa: National Defense Headquarters.

    Google Scholar 

Download references

Acknowledgements

We thank the editor, an unknown reviewer, and Paul De Boeck for their helpful and constructive comments that improved presentation and content.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gerhard Tutz.

Appendix

Appendix

Proposition

Let for the parameters of the general model with predictor \(\eta _{pi}=\theta_{p} -\beta_{i}-\boldsymbol {x}^{T}_{p} \boldsymbol {\gamma }_{i}\) be constrained by β I =0, \(\boldsymbol {\gamma }_{I}^{T}=(0,\dots,0)\) and let the matrix X with rows \((1,\boldsymbol {x}^{T}_{1}),\dots,(1,\boldsymbol {x}^{T}_{P})\) have full rank. Then parameters are identifiable.

Proof

Let two sets of parameters that fulfill the constraints be given such that

$$\eta_{pi}=\theta_p -\beta_i- \boldsymbol {x}^T_p \boldsymbol {\gamma }_i=\tilde{\theta}_p -\tilde{\beta}_i-\boldsymbol {x}^T_p \tilde{\boldsymbol {\gamma }}_i $$

for all persons and items. From considering item I and person p, one obtains by using \(\beta_{I}=\tilde{\beta}_{I}=0\), \(\boldsymbol {\gamma }_{I}^{T}=\tilde{\boldsymbol {\gamma }}_{I}^{T}=(0,\dots,0)\) \(\theta_{p}=\tilde{\theta}_{p}\). Therefore, one has \(\beta_{i}+\boldsymbol {x}^{T}_{p} \boldsymbol {\gamma }_{i}=\tilde{\beta}_{i}+\boldsymbol {x}^{T}_{p} \tilde{\boldsymbol {\gamma }}_{i}\) for all p, i, which for item i can be written in matrix form as

$$\boldsymbol {X}(\beta_i, \boldsymbol {\gamma }_i)^T = \boldsymbol {X}(\tilde{\beta}_i, \tilde{\boldsymbol {\gamma }}_i)^T. $$

One can multiply on both sides of the equation with X T, and, since X has full rank, with the inverse (X T X)−1, obtaining \((\beta_{i}, \boldsymbol {\gamma }_{i})^{T}=(\tilde{\beta}_{i}, \tilde{\boldsymbol {\gamma }}_{i})^{T}\). Alternatively, one can use the single value decomposition of X. □

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tutz, G., Schauberger, G. A Penalty Approach to Differential Item Functioning in Rasch Models. Psychometrika 80, 21–43 (2015). https://doi.org/10.1007/s11336-013-9377-6

Download citation

Key words

  • Rasch model
  • differential item functioning
  • penalized maximum likelihood
  • DIF lasso