, Volume 79, Issue 2, pp 340–346 | Cite as

Hierarchical Diagnostic Classification Models Morphing into Unidimensional ‘Diagnostic’ Classification Models—A Commentary

  • Matthias von Davier
  • Shelby J. Haberman


This commentary addresses the modeling and final analytical path taken, as well as the terminology used, in the paper “Hierarchical diagnostic classification models: a family of models for estimating and testing attribute hierarchies” by Templin and Bradshaw (Psychometrika, doi: 10.1007/s11336-013-9362-0, 2013). It raises several issues concerning use of cognitive diagnostic models that either assume attribute hierarchies or assume a certain form of attribute interactions. The issues raised are illustrated with examples, and references are provided for further examination.

Key words

latent structure model latent class analysis diagnostic models Guttman scaling hierarchical models 


  1. DeCarlo, L.T. (2011). On the analysis of fraction subtraction data: the DINA model, classification, latent class sizes, and the Q-matrix. Applied Psychological Measurement, 35, 8–26. CrossRefGoogle Scholar
  2. de Leeuw, J., & Verhelst, N. (1986). Maximum likelihood estimation in generalized Rasch models. Journal of Educational Statistics, 11, 183–196. Google Scholar
  3. Follmann, D. (1988). Consistent estimation in the Rasch model based on nonparametric margins. Psychometrika, 53, 553–562. CrossRefGoogle Scholar
  4. Formann, A.K. (1989). Constrained latent class models: some further applications. British Journal of Mathematical & Statistical Psychology, 42, 37–54. CrossRefGoogle Scholar
  5. Guttman, L. (1950). The basis for scalogram analysis. In S.A. Stouffer et al. (Eds.), The American soldier: Vol. 4. Measurement and prediction. New York: Wiley. Google Scholar
  6. Haberman, S.J. (1977). Maximum likelihood estimates in exponential response models. The Annals of Statistics, 5, 815–841. CrossRefGoogle Scholar
  7. Haberman, S.J., & von Davier, M. (2006). Some notes on models for cognitively based attribute diagnosis. In C.R. Rao & S. Sinharay (Eds.), Handbook of statistics: Vol. 26. Psychometrics (pp. 1031–1038). Amsterdam: Elsevier. CrossRefGoogle Scholar
  8. Haberman, S.J., von Davier, M., & Lee, Y. (2008). Comparison of multidimensional item response models: Multivariate normal ability distributions versus multivariate polytomous ability distributions (Research Report 08-45). Princeton, NJ: Educational Testing Service. Google Scholar
  9. Henson, R., Templin, J., & Willse, J. (2009). Defining a family of cognitive diagnosis models using log linear models with latent variables. Psychometrika, 74, 191–210. CrossRefGoogle Scholar
  10. Hermelin, M., & Nyberg, K. (2012). Multidimensional linear distinguishing attacks and Boolean functions. Cryptography and Communications, 4(1), 47–64. CrossRefGoogle Scholar
  11. Hox, J. (2002). Multilevel analysis: techniques and applications. Mahwah: Erlbaum. Google Scholar
  12. Junker, B.W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25(3), 258–272. CrossRefGoogle Scholar
  13. Kreft, I., & de Leeuw, J. (1998). Introducing multilevel modeling. London: Sage. Google Scholar
  14. Lazarsfeld, P.F. (1950). The logical and mathematical foundations of latent structure analysis. In S.A. Stouffer et al. (Eds.), Measurement and prediction (pp. 362–472). Princeton: Princeton University Press. Google Scholar
  15. Lazarsfeld, P.F., & Henry, N.W. (1968). Latent structure analysis. Boston: Houghton Mifflin. Google Scholar
  16. Leighton, J.P. & Gierl, M.J. (Eds.) (2007). Cognitive diagnostic assessment for education. Theory and applications. Cambridge: Cambridge University Press. Google Scholar
  17. Lindsay, B., Clogg, C.C., & Grego, J. (1991). Semiparametric estimation in the Rasch model and related exponential response models, including a simple latent class model for item analysis. Journal of the American Statistical Association, 86, 96–107. CrossRefGoogle Scholar
  18. Maris, E. (1999). Estimating multiple classification latent class models. Psychometrika, 64, 187–212. CrossRefGoogle Scholar
  19. Raudenbush, S.W., & Bryk, A.S. (2001). Hierarchical linear models: applications and data analysis methods (2nd ed.). Thousand Oaks: Sage. Google Scholar
  20. Rojas, G., & de la Torre, J. (2012). Choosing between general and specific cognitive diagnosis models when the sample size is small. Unpublished manuscript, Rutgers University, New Brunswick, NJ. Google Scholar
  21. Rupp, A., Templin, J., & Henson, R. (2010). Diagnostic measurement: theory, methods, and applications. New York: Guilford. Google Scholar
  22. Schwarz, G.E. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464. CrossRefGoogle Scholar
  23. Templin, J.L., & Bradshaw, L. (2013). Hierarchical diagnostic classification models: a family of models for estimating and testing attribute hierarchies. Psychometrika. doi: 10.1007/s11336-013-9362-0. Google Scholar
  24. Tsai, S.C. (1996). Lower bounds on representing Boolean functions as polynomials in Z m. SIAM Journal on Discrete Mathematics, 9, 96–101. CrossRefGoogle Scholar
  25. van der Linden, W. (2012). On compensation in multidimensional response modeling. Psychometrika, 77(1), 21–30. CrossRefGoogle Scholar
  26. Vermunt, J.K. (2003). Multilevel latent class models. Sociological Methodology, 33(1), 213–239. CrossRefGoogle Scholar
  27. von Davier, M. (2005). A general diagnostic model applied to language testing data (Research Report 05-16). Princeton, NJ: Educational Testing Service. Google Scholar
  28. von Davier, M. (2007). Hierarchical general diagnostic models (Research Report 07-19). Princeton, NJ: Educational Testing Service. Google Scholar
  29. von Davier, M. (2009). Some notes on the reinvention of latent structure models as diagnostic classification models. Measurement, 7(1), 67–74. Google Scholar
  30. von Davier, M. (2010). Hierarchical mixtures of diagnostic models. Psychological Test and Assessment Modeling, 52(1), 8–28. Retrieved from Google Scholar
  31. von Davier, M. (2011). Equivalency of the DINA model and a constrained general diagnostic model (Research Report 11-37). Princeton, NJ: Educational Testing Service. Retrieved from
  32. von Davier, M. (2013). The DINA model as a constrained general diagnostic model—two variants of a model equivalency. British Journal of Mathematical & Statistical Psychology. doi: 10.1111/bmsp.12003. Google Scholar
  33. von Davier, M., & Rost, J. (1995). Polytomous mixed Rasch models. In G.H. Fischer & I.W. Molenaar (Eds.), Rasch models—foundations, recent developments and applications (pp. 371–379). New York: Springer. Google Scholar
  34. von Davier, M., Xu, X., & Yamamoto, K. (2011, July). Why diagnostic models are latent class models—or the other way around? Paper presented at the many faces of latent class analysis symposium, 75th international meeting of the Psychometric Society, Hong Kong, China. Google Scholar

Copyright information

© The Psychometric Society 2013

Authors and Affiliations

  1. 1.Educational Testing ServicePrincetonUSA

Personalised recommendations