, Volume 78, Issue 3, pp 396–416 | Cite as

A Survey of the Sources of Noise in fMRI

  • Douglas N. Greve
  • Gregory G. Brown
  • Bryon A. Mueller
  • Gary Glover
  • Thomas T. Liu
  • Function Biomedical Research Network


Functional magnetic resonance imaging (fMRI) is a noninvasive method for measuring brain function by correlating temporal changes in local cerebral blood oxygenation with behavioral measures. fMRI is used to study individuals at single time points, across multiple time points (with or without intervention), as well as to examine the variation of brain function across normal and ill populations. fMRI may be collected at multiple sites and then pooled into a single analysis. This paper describes how fMRI data is analyzed at each of these levels and describes the noise sources introduced at each level.

Key words

functional MRI blood oxygen level dependent first-level analysis higher level analysis sources of noise 



Support for this research was provided in part by the National Center for Research Resources (P41-RR14075, R01 RR16594, P41-009874, the NCRR BIRN Morphometric Project BIRN002, and Functional Imaging Biomedical Informatics Research Network (FBIRN) U24 RR021382), the National Institute for Biomedical Imaging and Bioengineering (R01 EB001550, R01EB006758), as well as by the Department of Energy (DE-F02-99ER62764-A012) to the Mind Research Network (previously known as the MIND Institute).


  1. Aguirre, G.K., Zarahn, E., & D’Esposito, M. (1998). The variability of human, BOLD hemodynamic responses. NeuroImage, 8(4), 360–369. PubMedCrossRefGoogle Scholar
  2. Alsop, D.C., & Detre, J.A. (1996). Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. Journal of Cerebral Blood Flow and Metabolism, 16(6), 1236–1249. PubMedGoogle Scholar
  3. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113. PubMedCrossRefGoogle Scholar
  4. Beckmann, C., Jenkinson, M., & Smith, S. (2003). General multi-level linear modelling for group analysis in FMRI. NeuroImage, 20, 1052–1063. PubMedCrossRefGoogle Scholar
  5. Beckmann, C.F., & Smith, S.M. (2004). Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Transactions on Medical Imaging, 23(2), 137–152. PubMedCrossRefGoogle Scholar
  6. Birn, R.M., Diamond, J.B., Smith, M.A., & Bandettini, P.A. (2006). Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. NeuroImage, 31(4), 1536–1548. PubMedCrossRefGoogle Scholar
  7. Biswal, B., Yetkin, F., Haughton, V., & Hyde, J. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar imaging. Magnetic Resonance in Medicine, 34, 537–541. PubMedCrossRefGoogle Scholar
  8. Brosch, J.R., Talavage, T.M., Ulmer, J.L., & Nyenhuis, J.A. (2002). Simulation of human respiration in fMRI with a mechanical model. IEEE Transactions on Biomedical Engineering, 49(7), 700–707. PubMedCrossRefGoogle Scholar
  9. Brown, G.G., Mathalon, D.H., Stern, H., Ford, J., Mueller, B., Greve, D.N., McCarthy, G., Voyvodic, J., Glover, G., Diaz, M., Yetter, E., Ozyurt, I.B., Jorgensen, K.W., Wible, C.G., Turner, J.A., Thompson, W.K., & Potkin, S.G. (2011). Multisite reliability of cognitive BOLD data. NeuroImage, 54(3), 2163–2175. PubMedCrossRefGoogle Scholar
  10. Brown, G.G., Perthen, J.E., Liu, T.T., & Buxton, R.B. (2007). A primer on functional magnetic resonance imaging. Neuropsychology Review, 17(2), 107–125. PubMedCrossRefGoogle Scholar
  11. Bullmore, E., Long, C., Suckling, J., Fadili, J., Calvert, G., Zelaya, F., Carpenter, T.A., & Brammer, M. (2001). Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains. Human Brain Mapping, 12(2), 61–78. PubMedCrossRefGoogle Scholar
  12. Burock, M.A., & Dale, A.M. (2000). Estimation and detection of event-related fMRI signals with temporally correlated noise: a statistically efficient and unbiased approach. Human Brain Mapping, 11, 249–260. PubMedCrossRefGoogle Scholar
  13. Buxton, R.B. (2009). Introduction to functional magnetic resonance imaging: principles and techniques (2nd ed.). New York: Cambridge University Press. CrossRefGoogle Scholar
  14. Buxton, R.B., Uludag, K., Dubowitz, D.J., & Liu, T.T. (2004). Modeling the hemodynamic response to brain activation. NeuroImage, 23(Suppl 1), S220–S233. PubMedCrossRefGoogle Scholar
  15. Calhoun, V.D., Adali, T., Pearlson, G.D., & Pekar, J. (2001). A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping, 14(3), 140–151. PubMedCrossRefGoogle Scholar
  16. Calhoun, V.D., Stevens, M.C., Pearlson, G.D., & Kiehl, K.A. (2004). fMRI analysis with the general linear model: removal of latency-induced amplitude bias by incorporation of hemodynamic derivative terms. NeuroImage, 22(1), 252–257. PubMedCrossRefGoogle Scholar
  17. Chang, C., Cunningham, J.P., & Glover, G.H. (2009). Influence of heart rate on the BOLD signal: the cardiac response function. NeuroImage, 44(3), 857–869. PubMedCrossRefGoogle Scholar
  18. Chang, C., & Glover, G.H. (2009). Effects of model-based physiological noise correction on default mode network anti-correlations and correlations. NeuroImage, 47(4), 1448–1459. PubMedCrossRefGoogle Scholar
  19. Cohen, M.S. (1997). Parametric analysis of fMRI data using linear systems methods. NeuroImage, 6(2), 93–103. PubMedCrossRefGoogle Scholar
  20. Collins, D.L., Neelin, P., Peters, T.M., & Evans, A.C. (1994). Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography, 18(2), 192–205. PubMedCrossRefGoogle Scholar
  21. Cox, R., & Jesmanowicz, A. (1999). Real-time 3D image registration for functional MRI. Magnetic Resonance Imaging, 42, 1014–1018. Google Scholar
  22. D’Esposito, M., Zarahn, E., Aguirre, G.K., & Rypma, B. (1999). The effect of normal aging on the coupling of neural activity to the bold hemodynamic response. NeuroImage, 10(1), 6–14. PubMedCrossRefGoogle Scholar
  23. Dale, A.M. (1999). Optimal experimental design for event-related fMRI. Human Brain Mapping, 8, 109–114. PubMedCrossRefGoogle Scholar
  24. Fischl, B., Dale, A.M., Sereno, M.I., Tootell, R.B.H., & Rosen, B.R. (1998). A coordinate system for the cortical surface. NeuroImage, 7(4), S740. Google Scholar
  25. Fleisher, A.S., Podraza, K.M., Bangen, K.J., Taylor, C., Sherzai, A., Sidhar, K., Liu, T.T., Dale, A.M., & Buxton, R.B. (2009). Cerebral perfusion and oxygenation differences in Alzheimer’s disease risk. Neurobiology of Aging, 30(11), 1737–1748. PubMedCrossRefGoogle Scholar
  26. Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., & Raichle, M.E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678. PubMedCrossRefGoogle Scholar
  27. Friedman, L., & Glover, G.H. (2006). Report on a multicenter fMRI quality assurance protocol. Journal of Magnetic Resonance Imaging, 23(6), 827–839. PubMedCrossRefGoogle Scholar
  28. Friedman, L., Stern, H., Brown, G.G., Mathalon, D.H., Turner, J., Glover, G.H., Gollub, R.L., Lauriello, J., Lim, K.O., Cannon, T., Greve, D.N., Bockholt, H.J., Belger, A., Mueller, B., Doty, M.J., He, J., Wells, W., Smyth, P., Pieper, S., Kim, S., Kubicki, M., Vangel, M., & Potkin, S.G. (2008). Test-retest and between-site reliability in a multicenter fMRI study. Human Brain Mapping, 29(8), 958–972. PubMedCrossRefGoogle Scholar
  29. Friston, K.J., Fletcher, P., Josephs, O., Holmes, A., Rugg, M.D., & Turner, R. (1998). Event-related fMRI: characterizing differential responses. NeuroImage, 7(1), 30–40. PubMedCrossRefGoogle Scholar
  30. Friston, K.J., Frith, C.D., Turner, R., & Frackowiak, R.S. (1995). Characterizing evoked hemodynamics with fMRI. NeuroImage, 2(2), 157–165. PubMedCrossRefGoogle Scholar
  31. Friston, K.J., Holmes, A.P., & Worsley, K.J. (1999). How many subjects constitute a study? NeuroImage, 10(1), 1–5. PubMedCrossRefGoogle Scholar
  32. Friston, K.J., Jezzard, P., & Turner, R. (1994). Analysis of functional MRI time-series. Human Brain Mapping, 1, 153–171. CrossRefGoogle Scholar
  33. Friston, K.J., Williams, S., Howard, R., Frackowiak, R.S., & Turner, R. (1996). Movement-related effects in fMRI time-series. Magnetic Resonance in Medicine, 35(3), 346–355. PubMedCrossRefGoogle Scholar
  34. Genovese, C.R., Lazar, N.A., & Nichols, T.E. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage, 15, 870–878. PubMedCrossRefGoogle Scholar
  35. Glover, G.H. (1999). Deconvolution of impulse response in event-related BOLD fMRI. NeuroImage, 9(4), 416–429. PubMedCrossRefGoogle Scholar
  36. Glover, G.H., Li, T.Q., & Ress, D. (2000). Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magnetic Resonance in Medicine, 44(1), 162–167. PubMedCrossRefGoogle Scholar
  37. Glover, G.H., Mueller, B.A., Turner, J.A., van Erp, T.G., Liu, T.T., Greve, D.N., Voyvodic, J.T., Rasmussen, J., Brown, G.G., Keator, D.B., Calhoun, V.D., Lee, H.J., Ford, J.M., Mathalon, D.H., Diaz, M., O’Leary, D.S., Gadde, S., Preda, A., Lim, K.O., Wible, C.G., Stern, H.S., Belger, A., McCarthy, G., Ozyurt, B., & Potkin, S.G. (2012). Function biomedical informatics research network recommendations for prospective multicenter functional MRI studies. Journal of Magnetic Resonance Imaging, 36(1), 39–54. PubMedCrossRefGoogle Scholar
  38. Greve, D.N., Mueller, B.A., Liu, T., Turner, J.A., Voyvodic, J., Yetter, E., Diaz, M., McCarthy, G., Wallace, S., Roach, B.J., Ford, J.M., Mathalon, D.H., Calhoun, V.D., Wible, C.G., Brown, G.G., Potkin, S.G., & Glover, G. (2010). A novel method for quantifying scanner instability in fMRI. Magnetic Resonance in Medicine, 65(4), 1053–1061. PubMedCrossRefGoogle Scholar
  39. Handwerker, D.A., Ollinger, J.M., & D’Esposito, M. (2004). Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. NeuroImage, 21(4), 1639–1651. PubMedCrossRefGoogle Scholar
  40. Hanson, L. (2008). Is quantum mechanics necessary for understanding magnetic resonance? Concepts in Magnetic Resonance. Part A 32A(5), 329–340. CrossRefGoogle Scholar
  41. Hayasaka, S., & Nichols, T.E. (2003). Validating cluster size inference: random field and permutation methods. NeuroImage, 20(4), 2343–2356. PubMedCrossRefGoogle Scholar
  42. Henson, R.N., Price, C.J., Rugg, M.D., Turner, R., & Friston, K.J. (2002). Detecting latency differences in event-related BOLD responses: application to words versus nonwords and initial versus repeated face presentations. NeuroImage, 15(1), 83–97. PubMedCrossRefGoogle Scholar
  43. Hopfinger, J.B., Buchel, C., Holmes, A.P., & Friston, K.J. (2000). A study of analysis parameters that influence the sensitivity of event-related fMRI analyses. NeuroImage, 11(4), 326–333. PubMedCrossRefGoogle Scholar
  44. Huettel, S.A., Song, A.W., & McCarthy, G. (2009). Functional magnetic resonance imaging (2nd ed.). Sunderland: Sinauer Associates. Google Scholar
  45. Huettel, S.A., & McCarthy, G. (2000). Evidence for a refractory period in the hemodynamic response to visual stimuli as measured by MRI. NeuroImage, 11(5), 547–553. PubMedCrossRefGoogle Scholar
  46. Jezzard, P., & Balaban, R.S. (1995). Correction for geometric distortion in echo planar images from Bo field variations. Magnetic Resonance in Medicine, 34, 65–73. PubMedCrossRefGoogle Scholar
  47. Jezzard, P., Matthews, P., & Smith, S.M. (2001). Functional MRI: an introduction to methods. Oxford: Oxford University Press. Google Scholar
  48. Kelly, A.M., & Garavan, H. (2005). Human functional neuroimaging of brain changes associated with practice. Cerebral Cortex, 15(8), 1089–1102. PubMedCrossRefGoogle Scholar
  49. Kruger, G., & Glover, G.H. (2001). Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magnetic Resonance in Medicine, 46(4), 631–637. PubMedCrossRefGoogle Scholar
  50. Kumari, V., Gray, J.A., ffytche, D.H., Mitterschiffthaler, M.T., Das, M., Zachariah, E., Vythelingum, G.N., Williams, S.C., Simmons, A., & Sharma, T. (2003). Cognitive effects of nicotine in humans: an fMRI study. NeuroImage, 19(3), 1002–1013. PubMedCrossRefGoogle Scholar
  51. Levin, J.M., Ross, M.H., Mendelson, J.H., Kaufman, M.J., Lange, N., Maas, L.C., Mello, N.K., Cohen, B.M., & Renshaw, P.F. (1998). Reduction in BOLD fMRI response to primary visual stimulation following alcohol ingestion. Psychiatry Research, 82(3), 135–146. PubMedCrossRefGoogle Scholar
  52. Liang, Z., & Lauterbur, P.C. (2000). Principles of magnetic resonance imaging: a signal processing perspective. Piscataway: IEEE Press. Google Scholar
  53. Liu, T.T., Glover, G.H., Mueller, B.A., Greve, D.N., & Brown, G.G. (2012). An introduction to normalization and calibration methods in functional MRI. Psychometrika. Google Scholar
  54. Liu, T.T., Behzadi, Y., Restom, K., Uludag, K., Lu, K., Buracas, G.T., Dubowitz, D.J., & Buxton, R.B. (2004). Caffeine alters the temporal dynamics of the visual BOLD response. NeuroImage, 23(4), 1402–1413. PubMedCrossRefGoogle Scholar
  55. Liu, T.T., & Frank, L.R. (2004). Efficiency, power, and entropy in event-related FMRI with multiple trial types. Part I: theory. NeuroImage, 21(1), 387–400. PubMedCrossRefGoogle Scholar
  56. Logothetis, N.K., & Wandell, B.A. (2004). Interpreting the BOLD signal. Annual Review of Physiology, 66, 735–769. PubMedCrossRefGoogle Scholar
  57. Maus, B., Van Breukelen, G.J., Goebel, R., & Berger, M.P. (2010). Optimization of blocked designs in fMRI studies. Psychometrika, 56, 1338–1352. Google Scholar
  58. Maxim, V., Sendur, L., Fadili, J., Suckling, J., Gould, R., Howard, R., & Bullmore, E. (2005). Fractional Gaussian noise, functional MRI and Alzheimer’s disease. NeuroImage, 25(1), 141–158. PubMedCrossRefGoogle Scholar
  59. McGonigle, D.J., Howseman, A.M., Athwal, B.S., Friston, K.J., Frackowiak, R.S., & Holmes, A.P. (2000). Variability in fMRI: an examination of intersession differences. NeuroImage, 11(6 Pt 1), 708–734. CrossRefGoogle Scholar
  60. Miezin, F.M., Maccotta, L., Ollinger, J.M., Petersen, S.E., & Buckner, R.L. (2000). Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. NeuroImage, 11(6 Pt 1), 735–759. PubMedCrossRefGoogle Scholar
  61. Monti, M.M. (2011). Statistical analysis of fMRI time-series: a critical review of the GLM approach. Frontiers in Human Neuroscience, 5, 28. PubMedCrossRefGoogle Scholar
  62. Nishimura, D.G. (1996). Principles of magnetic resonance imaging. Stanford: Standford University. Google Scholar
  63. Payne, S.J. (2006). A model of the interaction between autoregulation and neural activation in the brain. Mathematical Biosciences, 204(2), 260–281. CrossRefGoogle Scholar
  64. Postelnicu, G., Zollei, L., & Fischl, B. (2009). Combined volumetric and surface registration. IEEE Transactions on Medical Imaging, 28(4), 508–522. PubMedCrossRefGoogle Scholar
  65. Seber, G.A.F., & Lee, A.J. (2003). Linear regression analysis (2nd ed.). Hoboken: Wiley. CrossRefGoogle Scholar
  66. Shen, S., Sterr, A., & Szameitat, A. (2005). A template effect study on voxel-based morphometry in statistic parametric mapping. Conference Proceedings (IEEE Engineering in Medicine and Biology Society. Conf.), 3, 3051–3054. Google Scholar
  67. Smith, S.M., Beckmann, C.F., Ramnani, N., Woolrich, M.W., Bannister, P.R., Jenkinson, M., Matthews, P.M., & McGonigle, D.J. (2005). Variability in fMRI: a re-examination of inter-session differences. Human Brain Mapping, 24(3), 248–257. PubMedCrossRefGoogle Scholar
  68. Strother, S., La Conte, S., Hansen, L.K., Anderson, J., Zhang, J., Pulapura, S., & Rottenberg, D.A. (2004). Optimizing the fMRI data-processing pipeline using prediction and reproducibility performance metrics: I. A preliminary group analysis. NeuroImage, 23, S196–S207. PubMedCrossRefGoogle Scholar
  69. Suckling, J., Ohlssen, D., Andrew, C., Johnson, G., Williams, S.C., Graves, M., Chen, C.H., Spiegelhalter, D., & Bullmore, E. (2008). Components of variance in a multicentre functional MRI study and implications for calculation of statistical power. Human Brain Mapping, 29(10), 1111–1122. PubMedCrossRefGoogle Scholar
  70. Thesen, S., Heid, O., Mueller, E., & Schad, L.R. (2000). Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magnetic Resonance in Medicine, 44(3), 457–465. PubMedCrossRefGoogle Scholar
  71. Thomas, R.J., & Kwong, K. (2006). Modafinil activates cortical and subcortical sites in the sleep-deprived state. Sleep, 29(11), 1471–1481. PubMedGoogle Scholar
  72. Tisdall, M., Hess, A., & van der Kouwe, A. (2010). Prospective motion correction of anatomical brain sequences using EPI navigators. Paper presented at the ISMRM Workshop on Current Concepts of Motion Correction for MRI & MRS. Google Scholar
  73. Triantafyllou, C., Hoge, R.D., Krueger, G., Wiggins, C.J., Potthast, A., Wiggins, G.C., & Wald, L.L. (2005). Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. NeuroImage, 26(1), 243–250. PubMedCrossRefGoogle Scholar
  74. Turner, G.H., & Twieg, D.B. (2005). Study of temporal stationarity and spatial consistency of fMRI noise using independent component analysis. IEEE Transactions on Medical Imaging, 24(6), 712–718. PubMedCrossRefGoogle Scholar
  75. van der Kouwe, A.J., Benner, T., Fischl, B., Schmitt, F., Salat, D.H., Harder, M., Sorensen, A.G., & Dale, A.M. (2005). On-line automatic slice positioning for brain MR imaging. NeuroImage, 27(1), 222–230. PubMedCrossRefGoogle Scholar
  76. Vincent, J.L., Snyder, A.Z., Fox, M.D., Shannon, B.J., Andrews, J.R., Raichle, M.E., & Buckner, R.L. (2006). Coherent spontaneous activity identifies a hippocampal-parietal memory network. Journal of Neurophysiology, 96(6), 3517–3531. PubMedCrossRefGoogle Scholar
  77. Ward, H.A., Riederer, S.J., Grimm, R.C., Ehman, R.L., Felmlee, J.P., & Jack, C.R. Jr. (2000). Prospective multiaxial motion correction for fMRI. Magnetic Resonance in Medicine, 43(3), 459–469. PubMedCrossRefGoogle Scholar
  78. Wise, R.G., Ide, K., Poulin, M.J., & Tracey, I. (2004). Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal. NeuroImage, 21(4), 1652–1664. PubMedCrossRefGoogle Scholar
  79. Woolrich, M., Ripley, B., Brady, J., & Smith, S. (2001). Temporal autocorrelation in univariate linear modelling of FMRI data. NeuroImage, 14(6), 1370–1386. PubMedCrossRefGoogle Scholar
  80. Woolrich, M.W., Behrens, T.E., & Smith, S.M. (2004a). Constrained linear basis sets for HRF modelling using variational Bayes. NeuroImage, 21(4), 1748–1761. PubMedCrossRefGoogle Scholar
  81. Woolrich, M.W., Jenkinson, M., Brady, J.M., & Smith, S.M. (2004b). Fully Bayesian spatio-temporal modeling of FMRI data. IEEE Transactions on Medical Imaging, 23(2), 213–231. PubMedCrossRefGoogle Scholar
  82. Worsley, K.J., Liao, C.H., Aston, J., Pere, V., Dunackn, G.H., Morales, F., & Evans, A.C. (2002). A general statistical analysis for fMRI data. NeuroImage, 15, 1–15. PubMedCrossRefGoogle Scholar
  83. Worsley, K.J., Marrett, S., Neelin, P., Vandal, A.C., Friston, K.J., & Evans, A.C. (1996). A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping, 4(1), 58–73. PubMedCrossRefGoogle Scholar
  84. Zhou, B., Konstorum, A., Duong, T., Tiue, K.H., Wells, W.M., Grown, G.G., Stern, H.S., & Shanbaba, B. (2012). A hierarchical modeling approach to data analysis and study desgin in a multi-site experimental FMRI study. Psychometrika. Google Scholar

Copyright information

© The Psychometric Society 2012

Authors and Affiliations

  • Douglas N. Greve
    • 1
  • Gregory G. Brown
    • 2
  • Bryon A. Mueller
    • 3
  • Gary Glover
    • 4
  • Thomas T. Liu
    • 5
  • Function Biomedical Research Network
  1. 1.Martinos Center for Biomedical Imaging, Department of RadiologyMassachusetts General HospitalCharlestownUSA
  2. 2.VA San Diego Healthcare System and Department of PsychiatryUniversity of California San DiegoSan DiegoUSA
  3. 3.Department of PsychiatryUniversity of Minnesota Twin CitiesMinneapolisUSA
  4. 4.Department of RadiologyStanford UniversityStanfordUSA
  5. 5.Center for Functional MRIUniversity of California San DiegoSan DiegoUSA

Personalised recommendations