, Volume 78, Issue 2, pp 243–259 | Cite as

Extracting Intrinsic Functional Networks with Feature-Based Group Independent Component Analysis



There is increasing use of functional imaging data to understand the macro-connectome of the human brain. Of particular interest is the structure and function of intrinsic networks (regions exhibiting temporally coherent activity both at rest and while a task is being performed), which account for a significant portion of the variance in functional MRI data. While networks are typically estimated based on the temporal similarity between regions (based on temporal correlation, clustering methods, or independent component analysis [ICA]), some recent work has suggested that these intrinsic networks can be extracted from the inter-subject covariation among highly distilled features, such as amplitude maps reflecting regions modulated by a task or even coordinates extracted from large meta analytic studies. In this paper our goal was to explicitly compare the networks obtained from a first-level ICA (ICA on the spatio-temporal functional magnetic resonance imaging (fMRI) data) to those from a second-level ICA (i.e., ICA on computed features rather than on the first-level fMRI data). Convergent results from simulations, task-fMRI data, and rest-fMRI data show that the second-level analysis is slightly noisier than the first-level analysis but yields strikingly similar patterns of intrinsic networks (spatial correlations as high as 0.85 for task data and 0.65 for rest data, well above the empirical null) and also preserves the relationship of these networks with other variables such as age (for example, default mode network regions tended to show decreased low frequency power for first-level analyses and decreased loading parameters for second-level analyses). In addition, the best-estimated second-level results are those which are the most strongly reflected in the input feature. In summary, the use of feature-based ICA appears to be a valid tool for extracting intrinsic networks. We believe it will become a useful and important approach in the study of the macro-connectome, particularly in the context of data fusion.

Key words

fMRI connectivity networks intrinsic activity independent component analysis feature extraction data fusion 



This research was supported in part by the National Institute of Health (NIH), under grants 1 R01 EB 000840, 1 R01 EB 005846, and 1 R01 EB 006841.


  1. Abbott, C., Juarez, M., White, T., Gollub, R.L., Pearlson, G.D., Bustillo, J.R., Lauriello, J., Ho, B.C., Bockholt, H.J., Clark, V.P., Magnotta, V., & Calhoun, V.D. (2011). Antipsychotic dose and diminished neural modulation: a multi-site fMRI study. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 35, 473–482. CrossRefGoogle Scholar
  2. Abou-Elseoud, A., Starck, T., Remes, J., Nikkinen, J., Tervonen, O., & Kiviniemi, V. (2010). The effect of model order selection in group PICA. Human Brain Mapping, 31(8), 1207–1216. PubMedGoogle Scholar
  3. Alkan, Y., Biswal, B.B., Taylor, P.A., & Alvarez, T.L. (2011). Segregation of frontoparietal and cerebellar components within saccade and vergence networks using hierarchical independent component analysis of fMRI. Vision Neuroscience, 28(3), 247–261. CrossRefGoogle Scholar
  4. Allen, E., Erhardt, E., Damaraju, E., Gruner, W., Segall, J., Silva, R., Havlicek, M., Rachakonda, S., Fries, J., Kalyanam, R., Michael, A., Turner, J., Eichele, T., Adelsheim, S., Bryan, A., Bustillo, J.R., Clark, V.P., Feldstein, S., Filbey, F.M., Ford, C., Hutchison, K., Jung, R., Kiehl, K.A., Kodituwakku, P., Komesu, Y., Mayer, A.R., Pearlson, G.D., Phillips, J., Sadek, J., Stevens, M., Teuscher, U., Thoma, R.J., & Calhoun, V.D. (2011). A baseline for the multivariate comparison of resting state networks. Frontiers in Systems Neuroscience, 5(2), 12. Google Scholar
  5. Andrews-Hanna, J.R., Reidler, J.S., Sepulcre, J., Poulin, R., & Buckner, R.L. (2010). Functional-anatomic fractionation of the brain’s default network. Neuron, 65(4), 550–562. PubMedCrossRefGoogle Scholar
  6. Beckmann, C.F., & Smith, S.M. (2005). Tensorial extensions of independent component analysis for multisubject FMRI analysis. NeuroImage, 25(1), 294–311. PubMedCrossRefGoogle Scholar
  7. Bell, A.J., & Sejnowski, T.J. (1995). An information maximisation approach to blind separation and blind deconvolution. Neural Computing, 7(6), 1129–1159. CrossRefGoogle Scholar
  8. Biswal, B.B., Mennes, M., Zuo, X.N., Gohel, S., Kelly, C., Smith, S.M., Beckmann, C.F., Adelstein, J.S., Buckner, R.L., Colcombe, S., Dogonowski, A.M., Ernst, M., Fair, D., Hampson, M., Hoptman, M.J., Hyde, J.S., Kiviniemi, V.J., Kotter, R., Li, S.J., Lin, C.P., Lowe, M.J., Mackay, C., Madden, D.J., Madsen, K.H., Margulies, D.S., Mayberg, H.S., McMahon, K., Monk, C.S., Mostofsky, S.H., Nagel, B.J., Pekar, J.J., Peltier, S.J., Petersen, S.E., Riedl, V., Rombouts, S.A., Rypma, B., Schlaggar, B.L., Schmidt, S., Seidler, R.D., Siegle, G.J., Sorg, C., Teng, G.J., Veijola, J., Villringer, A., Walter, M., Wang, L., Weng, X.C., Whitfield-Gabrieli, S., Williamson, P., Windischberger, C., Zang, Y.F., Zhang, H.Y., Castellanos, F.X., & Milham, M.P. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences of the United States of America, 107(10), 4734–4739. PubMedCrossRefGoogle Scholar
  9. Bockholt, H.J., Scully, M., Courtney, W., Rachakonda, S., Scott, A., Caprihan, A., Fries, J., Kalyanam, R., Segall, J., De la Garza, R., Lane, S., & Calhoun, V.D. (2010). Mining the mind research network: a novel framework for exploring large scale, heterogeneous translational neuroscience research data sources. Frontiers in Neuroinformatics, 3(36), 1–10. Google Scholar
  10. Calhoun, V.D., & Adali, T. (2009). Feature-based fusion of medical imaging data. IEEE Transactions on Information Technology in Biomedicine, 13(5), 1–10. CrossRefGoogle Scholar
  11. Calhoun, V.D., Adali, T., Kiehl, K.A., Astur, R.S., Pekar, J.J., & Pearlson, G.D. (2006). A method for multi-task fMRI data fusion applied to schizophrenia. Human Brain Mapping, 27(7), 598–610. PubMedCrossRefGoogle Scholar
  12. Calhoun, V.D., Adali, T., Pearlson, G.D., & Pekar, J.J. (2001). A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping, 14(3), 140–151. PubMedCrossRefGoogle Scholar
  13. Calhoun, V.D., Adali, T., Pekar, J.J., & Pearlson, G.D. (2003). Latency (in)sensitive ICA: group independent component analysis of fMRI data in the temporal frequency domain. NeuroImage, 20(3), 1661–1669. PubMedCrossRefGoogle Scholar
  14. Calhoun, V.D., Kiehl, K.A., & Pearlson, G.D. (2008). Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Human Brain Mapping, 29(7), 828–838. PubMedCrossRefGoogle Scholar
  15. Calhoun, V.D., Liu, J., & Adali, T. (2009). A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. NeuroImage, 45, 163–172. CrossRefGoogle Scholar
  16. Caprihan, A., Abbott, C., Yamamoto, J., Pearlson, G.D., Bizzozero, N., Sui, J., & Calhoun, V.D. (2011). Source-based morphometry analysis of group differences in fractional anisotropy in schizophrenia. Brain Connectivity, 1(2), 133–145. PubMedCrossRefGoogle Scholar
  17. Damoiseaux, J.S., Beckmann, C.F., Arigita, E.J., Barkhof, F., Scheltens, P., Stam, C.J., Smith, S.M., & Rombouts, S.A. (2008). Reduced resting-state brain activity in the “default network” in normal aging. Cerebral Cortex, 18(8), 1856–1864. PubMedCrossRefGoogle Scholar
  18. Erhardt, E., Allen, E., Damaraju, E., & Calhoun, V.D. (2011a). On network derivation, classification, and visualization: a response to Habeck and Moeller. Brain Connectivity, 1(2), 1–19. PubMedCrossRefGoogle Scholar
  19. Erhardt, E., Allen, E., Wei, Y., Eichele, T., & Calhoun, V.D. (2012). SimTB, a simulation toolbox for fMRI data under a model of spatiotemporal separability. NeuroImage, 59, 4160–4167. PubMedCrossRefGoogle Scholar
  20. Erhardt, E., Rachakonda, S., Bedrick, E., Adali, T., & Calhoun, V.D. (2011b). Comparison of multi-subject ICA methods for analysis of fMRI data. Human Brain Mapping, 12, 2075–2095. CrossRefGoogle Scholar
  21. Franco, A.R., Pritchard, A., Calhoun, V.D., & Mayer, A.R. (2009). Inter-rater and inter-method reliability of default mode network selection. Human Brain Mapping, 30(7), 2293–2303. PubMedCrossRefGoogle Scholar
  22. Friston, K., Ashburner, J., Frith, C.D., Poline, J.P., Heather, J.D., & Frackowiak, R.S. (1995a). Spatial registration and normalization of images. Human Brain Mapping, 2, 165–189. CrossRefGoogle Scholar
  23. Friston, K.J., Frith, C.D., Turner, R., & Frackowiak, R.S. (1995b). Characterizing evoked hemodynamics with fMRI. NeuroImage, 2(2), 157–165. PubMedCrossRefGoogle Scholar
  24. Himberg, J., Hyvarinen, A., & Esposito, F. (2004). Validating the independent components of neuroimaging time series via clustering and visualization. NeuroImage, 22(3), 1214–1222. PubMedCrossRefGoogle Scholar
  25. Kiviniemi, V., Starck, T., Remes, J., Long, X., Nikkinen, J., Haapea, M., Veijola, J., Moilanen, I., Isohanni, M., & Zang, Y.F. (2009). Functional segmentation of the brain cortex using high model order group PICA. Human Brain Mapping, 30, 3865–3886. PubMedCrossRefGoogle Scholar
  26. Laird, A.R., Fox, P.M., Eickhoff, S.B., Turner, J.A., Ray, K.L., McKay, D.R., Glahn, D.C., Beckmann, C.F., Smith, S.M., & Fox, P.T. (2011). Behavioral interpretations of intrinsic connectivity networks. Journal of Cognitive Neuroscience, 23(12), 4022–4037. PubMedCrossRefGoogle Scholar
  27. Li, Y., Adali, T., & Calhoun, V.D. (2007). Estimating the number of independent components for fMRI data. Human Brain Mapping, 28(11), 1251–1266. PubMedCrossRefGoogle Scholar
  28. McKeown, M.J., Makeig, S., Brown, G.G., Jung, T.P., Kindermann, S.S., Bell, A.J., & Sejnowski, T.J. (1998). Analysis of fMRI data by blind separation into independent spatial components. Human Brain Mapping, 6, 160–188. PubMedCrossRefGoogle Scholar
  29. Michael, A., Baum, S., White, T., Demirci, O., Andreasen, N.C., Segall, J.M., Jung, R.E., Pearlson, G.D., Clark, V.P., Gollub, R.L., Schulz, S.C., Roffmann, J., Lim, K.O., Ho, B.C., Bockholt, H.J., & Calhoun, V.D. (2010). Does function follow form?: methods to fuse structural and functional brain images show decreased linkage in schizophrenia. Human Brain Mapping, 49(3), 2626–2637. Google Scholar
  30. Scott, A., Courtney, W., Wood, D., De la Garza, R., Lane, S., Wang, R., Roberts, J., Turner, J.A., & Calhoun, V.D. (2011). COINS: an innovative informatics and neuroimaging tool suite built for large heterogeneous datasets. Frontiers in Neuroinformatics, 5(33), 1–15. Google Scholar
  31. Segall, J., & Calhoun, V.D. (2011). Structural and functional networks in the human brain. Paper presented at the Proc. HBM, Quebec City, Canada. Google Scholar
  32. Seifritz, E., Esposito, F., Hennel, F., Mustovic, H., Neuhoff, J.G., Bilecen, D., Tedeschi, G., Scheffler, K., & Salle, F.D. (2002). Spatiotemporal pattern of neural processing in the human auditory cortex. Science, 297(6), 1706–1708. PubMedCrossRefGoogle Scholar
  33. Shehzad, Z., Kelly, A.M., Reiss, P.T., Gee, D.G., Gotimer, K., Uddin, L.Q., Lee, S.H., Margulies, D.S., Roy, A.K., Biswal, B.B., Petkova, E., Castellanos, F.X., & Milham, M.P. (2009). The resting brain: unconstrained yet reliable. Cerebral Cortex, 19(10), 2209–2229. PubMedCrossRefGoogle Scholar
  34. Smith, S.M., Fox, P.T., Miller, K.L., Glahn, D.C., Fox, P.M., Mackay, C.E., Filippini, N., Watkins, K.E., Toro, R., Laird, A.R., & Beckmann, C.F. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 13040–13045. PubMedCrossRefGoogle Scholar
  35. Sui, J., Adali, T., Clark, V.P., Pearlson, G., & Calhoun, V.D. (2009). A method for accurate group difference detection by constraining the mixing coefficients in an ICA framework. Human Brain Mapping, 30(9), 2953–2970. PubMedCrossRefGoogle Scholar
  36. Sui, J., Adali, T., Yu, Q., & Calhoun, V.D. (2012). A review of multivariate methods for multimodal fusion of brain imaging data. Journal of Neuroscience Methods, 204(1), 68–81. CrossRefGoogle Scholar
  37. Svensen, M., Kruggel, F., & Benali, H. (2002). ICA of fMRI group study data. NeuroImage, 16, 551–563. PubMedCrossRefGoogle Scholar
  38. Van Dijk, K.R., Hedden, T., Venkataraman, A., Evans, K.C., Lazar, S.W., & Buckner, R.L. (2010). Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. Journal of Neurophysiology, 103(1), 297–321. PubMedCrossRefGoogle Scholar
  39. Varoquaux, G., Sadaghiani, S., Pinel, P., Kleinschmidt, A., Poline, J.B., & Thirion, B. (2010). A group model for stable multi-subject ICA on fMRI datasets. NeuroImage, 51(1), 288–299. PubMedCrossRefGoogle Scholar
  40. Xu, L., Groth, K., Pearlson, G., Schretlen, D., & Calhoun, V. (2009). Source based morphometry: the use of independent component analysis to identify gray matter differences with application to schizophrenia. Human Brain Mapping, 30, 711–724. PubMedCrossRefGoogle Scholar
  41. Ystad, M., Eichele, T., Lundervold, A.J., & Lundervold, A. (2010). Subcortical functional connectivity and verbal episodic memory in healthy elderly—a resting state fMRI study. NeuroImage, 52(1), 379–388. PubMedCrossRefGoogle Scholar
  42. Zou, Q.H., Zhu, C.Z., Yang, Y., Zuo, X.N., Long, X.Y., Cao, Q.J., Wang, Y.F., & Zang, Y.F. (2008). An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. Journal of Neuroscience Methods, 172(1), 137–141. PubMedCrossRefGoogle Scholar

Copyright information

© The Psychometric Society 2012

Authors and Affiliations

  1. 1.The Mind Research NetworkAlbuquerqueUSA
  2. 2.Dept. of ECEUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations